Conference Proceedings

ICIL 2023

COMPARISON OF IMPROVED ACO ALGORITHMS FOR TOOL PATH
OPTIMIZATION IN MULTI-HOLE DRILLING

Luka OLIVARI

Abstract: Optimization of the tool path in the multi-hole drilling process is crucial for reducing the overall cost of production as most of the time is consumed by non-cutting tool
movement. Metaheuristics are often used for tool path optimization, with novel and improved algorithms proposed regularly. The observed problem is that proposed algorithms
are often compared only to the non-improved versions of metaheuristics or to solutions obtained by CAM software. As expected, improved and novel approaches produce better
results than their non-improved counterparts, but it is not known how they compare to the other improved algorithms. Also, the Chebyshev distance matrix is more appropriate for
calculating distances in multi-hole drilling. This paper aims to provide data that describes the performance of several improved versions of the ACO algorithm using the Chebyshev
distance matrix. By doing so, researchers could easily compare their proposed algorithms to more than just basic ACO to get better feedback about their algorithm performance

for tool path optimization.

Keywords: tool path, Ant Colony Optimization, ACO, multi-hole drilling

1 INTRODUCTION

There is a constant effort to optimize different aspects of
the CNC machining process like minimizing machining time,
airtime, tool path, computational time, tool changing time,
and cost, or increasing productivity and surface quality. All
of these can be achieved with an improved machine and tool
design, parameter, and tool path optimization. [1]

Drilling is an essential operation in CNC machining and
multi-hole drilling is a process of drilling a large number of
holes in a product. The hole-drilling processes can be divided
into single-tool hole drilling (ST) and multi-tool hole drilling
(MT) problems. As the name says, in ST only one type of
tool is used for drilling, and in MT holes on the workpiece
require different tools to be produced. As non-cutting time in
the multi-hole drilling process can take up most of the total
process time, it is one of the key aspects of optimization in
the production industry. That is the main reason why authors
often propose new or improved optimization methods for the
multi-hole drilling process. Both ST and MT problems are
essentially the same from the optimization point of view,
because both problems may be represented by Traveling
Salesman Problem (TSP). In the ST problem, the cost of the
tool moving from hole to hole is represented with a cost
matrix, and in the MT problem the cost is the sum of tool
change and tool movement which can also be represented
with a single cost matrix. [2]

The authors propose three kinds of improvements over
the existing optimization algorithms. Completely new
algorithms that often draw inspiration or copy some natural
process like the mating or hunting habits of animals.
Enhanced versions of existing algorithms with improvements
to achieve superior performance over the original algorithm.
Hybrid algorithms combine multiple algorithms to produce a
new algorithm with better performance than its initial
components.

Two problems were observed. One problem is that
improved or hybrid algorithms for optimization of tool path

in multi-hole drilling process are often compared to the basic
versions of classical algorithms like Ant Colony
Optimization, simple heuristics, or to the tool paths obtained
with CAM software, and as expected, achieve better
performance. That approach doesn’t show how those
algorithms compare to the improved versions of existing
algorithms. The second problem is that the Euclidian distance
matrix doesn’t accurately represent travel times or costs in
CNC machining [2]. It is because CNC machines use two
motors, one for movement along X and the other for the Y
axis. If motors are sequentially activated a rectilinear
distance matrix would be appropriate. As that is usually not
the case, a Chebyshev distance matrix is the most suitable for
multi-hole drilling problems because both motors are
simultaneously activated, and actual travel time is
determined by the longest distance along X or Y axis. As
stated in [2] only 19 out of 53 reviewed papers on multi-hole
drilling tool path optimization used the Chebyshev distance
matrix.

This paper aims to provide comprehensive data on the
performance of the improved ACO algorithms applied to the
benchmark TSP instances using the Chebyshev distance
matrix which can be calculated using expression (1). The
goal of this paper is to enable researchers quickly and easy
comparison of proposed algorithms for tool path
optimization in multi-hole drilling to more than just the basic
Ant System.

d; = max(|x1 —x2| ,

¥ =) (1

Data will also be provided for the performance of the
improved ACO algorithms on the same benchmark problems
using the Euclidean distance matrix. There are two reasons
for that. First, the optimal or best-known solutions for these
benchmark problems are known for the Euclidean distances
between nodes, but not for the Chebyshev distances. That
makes it hard to calculate the relative maximum deviation

Page 75

ICIL 2023

International Conference on Industrial Logistics, May 31 — June 02, 2023, Hotel Kolovare, Zadar, Croatia

from the optimum for the optimization algorithm. It is
reasonable to expect similar values for the relative maximum
deviation for Euclidean and Chebyshev distances, so by
providing data for one case, the other can be approximated.
The second reason is that a lot of authors use the Euclidean
distance matrix in their algorithms, and we want to provide
data for easy comparison in that case too.

The following paragraph contains a short literature
survey to showcase a comparison of new and improved
algorithms to basic heuristics, meta-heuristic, or CAM
software results. In [3] authors propose a novel Bat
Algorithm (BA) that draws inspiration from bat hunting
behavior. The BA algorithm was compared to Genetic
Algorithm, Particle Swarm Optimization, Ant Colony
Optimization, and Artificial Bee Colony algorithms. In [4]
authors apply Genetic Algorithm with a modified cross-over
method to a workpiece with 28 holes to optimize the tool path
for energy-efficient machining. Results were compared with
the tool path generated by Autodesk Inventor. In [5] authors
use Artificial Neural Networks and a hierarchical refinement
process for fast tool path optimization. Results were
compared to those obtained with the greedy algorithm
followed by 2-opt. In [6] authors use a simulated annealing
algorithm combined with an adaptive large neighborhood
search to optimize the laser cutting path. The problem is
represented with generalized TSP and results were compared
to commercial CAM software and similar scientific papers.

After an introduction, in chapter 2 Ant System, its
improvements, and the differences between them are
described, test results and discussion are presented in chapter
3, and concluding remarks in chapter 4.

2. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a metaheuristic
optimization framework that encompasses a variety of
algorithms inspired by the stigmergy of the ant colonies in
search of food. Ants in nature use the stigmergy mechanism,
a form of indirect interaction, by modifying their
environment with pheromone trails. Ants, unaware of each
other, lay and ‘“read” the pheromone trail to obtain
information. An ant that has found the food source deposits a
pheromone trail which increases the probability that other
ants will follow the same path to the food source. The more
ants use that path, and lay their pheromone, the chance for
other ants to follow that path increases.

Artificial ants in ACO algorithms have a similar
approach which can be used to solve a wide range of
optimization problems, especially problems that involve
finding the shortest path in a graph, such as the Traveling
Salesman Problem (TSP) and Vehicle Routing Problem
(VRP). Ant System (AS) was the first algorithm in the ACO
metaheuristic optimization framework. Although AS didn’t
perform as well as other algorithms for solving TSP at that
time, its main value is that it inspired many other ACO
algorithms with significantly improved performance. Some
of those improved algorithms are Elitist AS, Ranked AS, and
MAX-MIN AS. The main difference between an original AS

Page 76

and its “classical” improvements is in the pheromone update
mechanism. [7]

Pheromone is updated after all ants in the current
iteration have completed their tours. The first step of
pheromone update is pheromone evaporation, i.e. lowering
pheromone levels by a constant percentage, after that, new
pheromone levels are added. Pheromone evaporation is
regulated with parameter p to stop pheromones from rising
infinitely and to deter ants from exploring bad tours and
edges which accumulated pheromones by chance. Parameter
p can be set in a range from 0 to 1, and it represents the
percentage of how much of accumulated pheromone
evaporates between iterations.

After evaporation, ants deposit pheromones on the edges
used for constructing their tours. The amount of pheromone
Atk deposited by ant k depends on the tour quality. The
shorter the tour the more pheromone is deposited. Edges used
by many ants with short tours receive a lot of pheromones so
there is a higher probability for that edges to be chosen in the
next iterations. Pheromone evaporation and deposition are
modeled according to the expression (2).

z'if :(l—p)r,j+kZ_;Ar§ 2

Elitist Ant System (EAS) increases amounts of
pheromone deposition on the edges that make the best-so-far
solution Tbs created since the beginning of the process. This
tour can be viewed as an additional elite ant that deposits a
pheromone in each iteration. The length of Tbs is denoted by
the Cbs. The amount of additional pheromone added to the
best-so-far solution is calculated by e/Cbs, where e is the
weight given to the best-so-far solution.

Ranked-based Ant System (RAS or ASrank) is an
extension of the Elitist Ant System in which amounts of
deposited pheromone depends on the ant’s rank r, i.e. the
quality of the solution obtained by each ant. As in EAS the
ant with the best-so-far solution deposits the most
pheromones in each iteration, the second best-so-far ant
deposits fewer pheromones, etc. The number of ants that
deposit pheromone is denoted with w and the amount of
pheromone deposited by the best-so-far is calculated by w-1/
Cbs and by the rest of the ranked ants is (w-r) -1/ Cr, where
Cr is the length of the solution by rth ant.

High-quality solutions are obtained by combining ACO
algorithms with Local Search because they complement each
other. In fact, the definition of the ACO framework allows
using local search. There are lots of ways to combine Local
Search with ACO algorithms, a general rule is the better
solution comes at the price of longer computation time. We
used the 2-opt algorithm, as one of the basic Local Search
algorithms. 2-opt switches two pairs of edges in all possible
combinations for the given tour to eliminate any cross-overs
of edges. For in-depth descriptions of the Ant System, its
extensions and possible combinations with the Local Search
reader are directed to [7].

Conference Proceedings

ICIL 2023

3 EXPERIMENT AND DISCUSSION

As both ST and MT problems can be represented with
Traveling Salesman Problem, Ant System and its improved
versions were applied to TSP benchmark problems eil51 and
eill01 found in TSPLIB [8]. The best-known solution for
eilS1 is 426, and for eil101 is 629. The parameters used for
each algorithm are shown in table 1. Used parameters are
recommended parameters for general good performance
from [7], except for the number of ants. Preliminary testing
showed a significant increase in computation time at the price
of slightly worse solutions. Using 101 ants for the eil101 Ant
System produced an average solution of 696,5 in 85 seconds,
while Rank-based AS produced an average solution of 651,5
in 80 seconds. Parameter has recommended value in the
range 2 — 5, we used the upper limit # = 5, as it produced
better results in preliminary testing. Initial pheromone levels
79 are calculated according to the equation in the table, where
C™ is the length of tour obtained with the Nearest Neighbor
algorithm.

Table 1 ACO parameters

used only for the Euclidean distance matrix because the
optimal solution using the Chebyshev distance matrix isn’t
known. Average execution time is wall-clock time for a
single run of the algorithm i.e., time to compute all iterations
until stopping criteria are met, including the Local Search. In
table 2. and table 3. test results are presented. The numbers
in the first column correspond to the numbers before the
metrics in the text above.

Table 2 Test results, Chebyshev distance matrix

AS + |EAS +|RAS +
2-opt | 2-opt | 2-opt
1) 378 377 377 377 377 377
2) 388 | 382,2 | 3793 | 381,5 379 | 378,2
3) 0,8% | 0,86% |0,54% | 1,17% | 0,61% | 0,6%
4) - - - - - -

5) 81s | 79s | 79s | 81s | 78s | 79s

AS+ |EAS +|RAS +
2-opt | 2-opt | 2-opt
1) 595 569 570 576 569 565

eilS1 AS EAS | RAS

eill01 | AS EAS | RAS

As mentioned before, there are lots of ways to combine
ACO with Local Search algorithms. In our case, we used the
least computationally intensive Local Search algorithm, 2-
opt, and apply it after all ACO iterations to improve only the
final solution. No special speed-up techniques were used for
ACO algorithms nor 2-opt which means that faster
performance is possible.

Testing was performed on Windows 10 64-bit operating
system using MATLAB R202la. The computer
configuration was Intel(R) Core(TM) i5-10210U CPU 2.10
GHz, installed RAM 8 GB. Code used can be found on the
GitHub repository [9]. The stopping criteria were 300
iterations, and every algorithm was run 20 times to average
out results.

Algorithm performance was analyzed using the
following metrics: 1) best solution overall, 2) average
solution quality, 3) relative standard deviation, 4) relative
maximum deviation, and 5) average execution time.

The best solution overall is the best solution produced by
the given algorithm in all runs. Average solution quality is
calculated by the mean of the best solutions produced in all
20 runs by a single algorithm. Relative standard deviation is
calculated by dividing the standard deviation from the
optimal solution and given in form of a percentage. It shows
how precisely the algorithm produces solutions close to the
optimum. The maximum deviation is calculated by dividing
the worst final solution in all runs by the optimal solution and
given in form of a percentage. It shows the worst expected
performance of the algorithm with given parameters. It is

a|B| p | m w 2) | 623 | 5913|5878 | 590 | 5792 | 576
AS 1| s os | 25 m/cm] 3) [232% |3.04% | 2.86% | 2,16% | 1,6% |1,39%
EAS | 1] 5|05 25 | e+mfpC™ | e=m 4) - - - - - -
5) | 2085 | 21,1s | 194s | 21,75 | 21,1s | 19,5
RAS | 1| 5| 01| 25 |05(-UpCm| w=6

Table 3 Test results, Euclidean distance matrix
AS+ |EAS +|RAS +
2-opt | 2-opt | 2-opt
1) 449,6 | 429,5 | 4304 | 4313 | 429 | 429,1

2) 4579 | 4374 | 4354 | 439,2 | 433,1 | 432,8
3) 1,02% | 1,28% | 0,87% | 1,15% | 0,71% | 0,72%
4) 8,77% | 5,35% | 4,67% | 4,92% | 4,16% | 4,16%
5) 8,1 8,1 76s | 83s | 81s | 7,7s

AS+ |EAS+|RAS +
2-opt | 2-opt | 2-opt
1) 6913 | 642,5 | 649 | 6574 | 643,1 | 642

2) 705,7 | 669,1 | 661,3 | 671 | 653,2 | 6495
3) 1,25% | 2,31% | 1,59% | 1,3% | 1,14% |1,13%
4) [14,74%|11,95%] 9,05% | 9,13% | 5,93% |5,79%
5) 20,5s(20,5s| 19s |21,2s | 21,3s | 19,7s

eilS1 AS EAS | RAS

eill01 | AS EAS | RAS

As expected, Rank-based AS produced slightly better
average results than Elitist AS, which in turn produced better
results than the basic Ant System. Applying 2-opt improved
all average solutions in all three algorithms. The same best
overall solution for eil51 and Chebyshev distance matrix was
achieved by all algorithms except AS, while the best average
solution was produced by RAS and 2-Opt. The best overall
solution for eil101 was produced with RAS combined with
2-opt, while the best overall solution for eil51 and Chebyshev
distance matrix RAS and 2-opt. The worst maximum
deviation for the Euclidean distance matrix was produced by

Page 77

ICIL 2023

International Conference on Industrial Logistics, May 31 — June 02, 2023, Hotel Kolovare, Zadar, Croatia

Ant System, and it can be concluded that the worst maximum
deviation for the Chebyshev distance matrix could also be
expected from Ant System. Rank-based AS, without 2-opt,
had the lowest computational time. The reason for that is the
shorter pheromone update calculation, because in RAS only
the top w number of ants deposit pheromones, while in other
algorithms all ants deposit pheromones.

Coupling ACO algorithms with better Local Search
algorithms like 3-Opt or Lin-Kemighan Heuristic could
produce much better results at the price of longer
computation time. Longer computation could be somewhat
countered with the use of speedup techniques for ACO and
Local Search algorithms.

4, CONCLUSIONS

Data on the performance of the Ant System and
improved ACO algorithms, Elitist Ant System, and Rank-
based Ant system using the Chebyshev distance matrix for
TSP is provided. Data can be used for comparison of newly
proposed or improved algorithms for tool path optimization
in multi-hole drilling. Of course, used algorithms could
achieve much better performance if parameters were fine-
tuned for specific problems, but as the main purpose of this
data is to enable quick and easy comparison of newly
proposed algorithms to the more than just Ant System, it is
more appropriate to use recommended parameters for
generally good performance.

For future research, algorithms could be applied to other
benchmark and industrial problems, especially larger ones.
More improved ACO algorithms could be included for easy
comparison, as well as improved versions of other heuristics
and metaheuristics. Also, a framework for comparison of
meta-heuristics would be very useful as well as benchmark
problems specific to multi-hole drilling.

5. REFERENCES

[1] Narooei KD, Ramli R. Application of artificial intelligence
methods of tool path optimization in CNC machines: A review.
Res J Appl Sci Eng Technol. 2014;8(6):746-54.

[2] Dewil R, Kiigiikoglu I, Luteyn C, Cattrysse D. A Critical
Review of Multi-hole Drilling Path Optimization. Arch
Comput Methods Eng [Internet]. 2019 Apr 22;26(2):449-59.
Available from: http:/link.springer.com/10.1007/s11831-018-
9251-x

[3] Diyaley S, Burman Biswas A, Chakraborty S. Determination
of the optimal drill path sequence using bat algorithm and
analysis of its optimization performance. J Ind Prod Eng.
2019;36(2):97-112. Available from:
https://doi.org/10.1080/21681015.2019.1585974

[4] Raja B, Saravanan M. Tool Path optimization by Genetic
algorithm for Energy Efficient Machining. 2018;14:1670-9.

[5] Fok KY, Ganganath N, Cheng CT, Iu HHC, Tse CK. Tool-path
optimization using neural networks. Proc - IEEE Int Symp
Circuits Syst. 2019;2019-May(c):1-5.

[6] Hajad M, Tangwarodomnukun V, Dumkum C, Jaturanonda C.
Solving the laser cutting path problem using population-based
simulated annealing with adaptive large neighborhood search.
Key Eng Mater. 2020;833 KEM:29-34.

Page 78

[7] Dorigo M, Stiitzle T. Ant colony optimization. 2004. 319 p.
Available from: https://mitpress.mit.edu/books/ant-colony-
optimization

[8] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB9S/
(accesed: 16.1.2023.)

[9] https://github.com/l-olivari/ICIL2023 (accesed: 1.4.2023.)

Authors’ contacts:

Luka Olivari, mag. ing. mech.
Polytechnic of Sibenik

Trg Andrije Hebranga 11, Sibenik, Croatia
lolivari@vus.hr

