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Highlights:

What are the main findings?

e Anincrease in the number of fifth-generation (5G) user devices (UDs) has an impact on the
energy efficiency (EE) of the overall 5G mobile network, which is especially significant in dense
and urban-dense city areas.

e  The improvement of overall 5G network EE can be achieved through dynamic allocation of 5G
base stations (BSs) and corresponding radio resources according to data volume (DV) variations
caused by a constant increase in the number of UDs in 5G heterogeneous networks (HetNets).

What is the implication of the main finding?

e If 5G BSs installation and operation strategies can be optimized according to DV variations
caused by the continuous increase in the number of UDs, mobile network operators (MNOs)
can improve the sustainability of 5G networks and reduce energy costs of network operation,
especially in urban and urban-dense city areas.

e  For future long-term 5G network installation and operation planning, MNOs should prioritize
the improvement of 5G HetNet energy efficiency as one of the main goals to achieve a balance
between the environmental or economic impacts of 5G HetNet operation and the need for
ensuring network connectivity to continuously growing number of 5G UDs demanding different
services, of which the smart city service is one of the most prominent.

Abstract: The global deployment of fifth-generation (5G) mobile networks, especially in urban cities,
is dedicated to accommodating the demand for high data rates and reliable wireless communications.
While the latest 5G networks improve service quality, the support for a simultaneous serving of more
user devices (UDs) with higher data rates than previous mobile network generations will require
a massive installation of different 5G base station (BS) types dominantly in urban cities. Besides
contributing to the smart city service improvements, this massive installation of heterogeneous
5G BSs will also contribute to the increase in 5G network energy consumption (EC) and carbon
dioxide emissions. Since this increase in installed 5G BSs imposes environmental and economic
challenges, this paper analyzes the impact of the continuously rising number of 5G UDs on the energy
efficiency (EE) of the radio part of Croatian and Dutch 5G networks as example cases in the period
of 2020s. Analyses consider the countries’ rural, suburban, urban, and dense urban UD density
areas by utilizing the proposed simulation framework for the EE evaluation of 5G heterogeneous
networks (HetNet) valued through standardized mobile networks EE metrics. The study examines
four proposed BS installation and operation scenarios for reducing energy costs of 5G networks that
differ in optimizing energy consumption via different BS installations, sleep modes, and transmission
power scaling techniques. The obtained results indicate that dynamic adaptation of BS deployments
and radio resource management during operation according to the increase in the number of UDs and
corresponding DVs can enhance 5G HetNet EE. The findings provide valuable insights for mobile
network operators looking to optimize 5G network EE in the upcoming decade.
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1. Introduction

The exploitation of information and communication technologies (ICTs) in many
aspects of modern living is accompanied by increased concern about its impact on the
environment. Mobile networks as an important part of the ICT sector have revolutionized
our daily lives over the past few decades, changing the way we work, communicate,
and interact. Positive transformations include examples such as the use of e-commerce,
telecommuting, and smart technologies which consequently reduce fuel consumption and
greenhouse gas (GHG) emissions in different economic sectors. According to the analysis of
the Global eSustainability Initiative (GeSI) SMARTer2030 report [1], the ICT sector achieves
a 9.7 times reduction in carbon dioxide equivalent (COye) emissions when compared with
its own CO,e emissions. Therefore, increased use of mobile networks as an important part
of the ICT sector could help balance environmental conservation with economic growth
and, thus, simultaneously contribute to the achievement of both objectives. On the other
hand, this increased use of mobile networks raises a significant concern related to the energy
costs and carbon dioxide (CO,) emissions in manufacturing, and especially the installation
and the operation phase of mobile network elements. This has become one of the major
concerns in the ICT sector. Although mobile networks as an important part of the ICT
sector can contribute to reductions of carbon emissions and energy conservation in different
economic sectors, this ability can be significantly impaired by the energy consumption (EC)
and CO, emissions of mobile network elements during their operational lifetime [2].

As the world continues its rapid transformation into the digital age, there has never
been a greater need for the development of mobile networks that can ensure high data trans-
fer rates and reliable wireless communications. The latest standardized fifth-generation
(5G) mobile network is envisioned to offer much faster data rates than its predecessors
and support a wide range of devices in the Internet of Things (IoT) ecosystem. However,
the introduction of 5G networks also presents a significant challenge related to EC. As 5G
networks start to rapidly deploy globally, there is an urgent need to ensure their efficient op-
eration while minimizing their energy footprint and maximizing their performance. Since
energy costs for ensuring the operation of 5G networks take a considerable part of mobile
network operators’ (MNOs) operating expenditures (OPEXs), improving energy efficiency
(EE) of 5G networks presents not only an environmental but also a financial concern [3].

In the phase of developing mobile network infrastructure, a major concern of MNOs
in the past was primarily related to minimizing network cell outages [4] and ensuring
appropriate bandwidth, coverage, and transmission latency to the users. However, with
increasing environmental and economic considerations, the EE of mobile networks has
become one of the key performance indicators for the development of next-generation
mobile networks. In order to maintain quality of service (QoS) for different applications
and use cases, MNOs must adapt to the growing number of user devices (UDs) and
consequently to the constant increase in data volume (DV) caused by the rising number of
bandwidth-demanding services. Both factors contribute to the increase in EC of 5G mobile
network, which introduces further environmental and economic challenges. Consequently,
in today’s mobile network planning and operation processes, MNOs have started to
prioritize EE as an important key performance indicator (KPI) of network operation [5].

The International Telecommunication Union (ITU) has established the IMT-2020 guide-
lines for 5G mobile networks, selecting technologies that support specific 5G network use
cases [6]. These use cases include enhanced mobile broadband (eMBB) with peak speeds
reaching 20 Gbps and an average of 100 Mbps in populated areas. They also include
ultra-reliable and low-latency communications (URLLC) suitable for implementations in
virtual reality (VR) and vehicle connectivity, the increased network capacity to handle
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massive machine-type communications (mMTC) with more than a million IoT connections
per square kilometer, and fixed wireless access (FWA) that delivers fiber-like speeds in the
mobile access network of urban and rural areas. To enable the practical realization of these
use cases, the 5G mobile network is envisioned as a heterogeneous network (HetNet) with
different types of 5G base stations (BSs). This versatility in types of BSs includes outdoor
macro BSs that provide wide signal coverage and small BSs (such as micro, pico, and femto
BSs) to meet demands for high DVs and capacities in spatially limited areas, either indoors
or outdoors.

The saturation of up to 6 GHz radio frequency bands due to the intensive usage of dif-
ferent communication technologies limits the possibility of using wide frequency channels
in 5G mobile networks. Consequently, the 5G network-related standards also have pro-
posed communications in millimeter-wave (mmWave) frequency bands (24—47 GHz) [7].
While communications in mmWave frequency bands can provide users with higher through-
puts due to broader frequency channels, mmWave communications also have limitations.
These limitations are manifested in reduced signal coverage due to the significant prop-
agation, penetration, and attenuation losses of mmWave signals [8], and since mmWave
signals enable the transfer of large data rates, limitations are also manifested in the inherent
need for employing fiber optic links in connecting the BSs radio and baseband units [9].
Consequently, this impacts the 5G HetNet architecture that will generally in future practical
implementations integrate a combination of a smaller number of macro BSs and a larger
number of small BSs to offset the limited coverage of small 5G BSs and limited capacity of
5G macro BSs.

Therefore, the total number of deployed macro and small 5G BSs in specific areas of the
5G networks will be affected by user device (UD) density and traffic capacity needs. Thus,
different device densities and traffic requirements in certain areas will require different 5G
network BS allocations in terms of the number, type, and capacities of BSs. This in turn
affects the EC of the 5G mobile network. Although some BS generations in the future will
be removed from the network (such as the third generation (3G) BSs) and thus contribute
to the improvement of EE of mobile networks, the need for the continuous allocation of
new macro and small 5G BSs will persist and this will have a negative impact on the EC of
the 5G network.

Thus, in this paper, the analyses of the impact of continuous increase in the number of
mobile users on 5G network EE for the period of 2020-2030 have been thoroughly analyzed.
The algorithms enabling simulation analyses of future trends in changes of 5G HetNet EE
metrics for different 5G BS deployment and operation management scenarios have been
developed. An analysis is performed on the example of the two European countries on
the national level, which differs in terms of the number of UDs and country geography.
The paper presents comprehensive analyses of the trends in changes of the 5G HetNet EC
and two standardized network EE metrics, exploiting four different 5G BS installation and
operation management scenarios that have different impacts on 5G network EE metrics.
Hence, the main objective of the paper is to give an answer on how the constantly growing
number of 5G UDs and consequently increasing mobile network data traffic volumes will
impact the EE of 5G mobile networks by the end of 2030.

The rest of the article is organized as follows. In Section 2, an overview of the previous
research work related to improving EE of mobile networks is presented. In Section 3,
the standardized data and coverage mobile network EE metrics are introduced. The
methodology and simulation models of the 5G network used for the estimation of the
5G network EE of a given country are described in Section 4. The developed analytical
framework and algorithms used for estimating 5G network EE are presented in Section 5. In
Section 6, the obtained results related to the visualization of EE metrics of 5G networks for
each country and analyzed simulation scenarios are described. A comprehensive discussion
tackling different aspects of obtained results related to the impact of the increase in the
number of UD on 5G network EE is given in Section 7. Finally, concluding remarks are
given in Section 8.
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2. Related Work

Over the past ten years, the academic and industrial sectors have shown a growing
interest in enhancing the EE of wireless access networks. The dynamic radio resource
management (RRM) and power supply from renewable energy sources of wireless network
equipment was one of the first solutions envisioned for improving wireless network EE [10].
In [11], a sustainable communication model for 5G networks was introduced. This model
suggests that the increased EC in wireless networks consisting of dense BS small cell
deployments can be compensated by employing BS sleep mode operation. Similarly,
authors in the study [12] proposed an energy-efficient resource management technique
for 5G HetNets. The proposed technique employs an analytical model that determines
the optimal number of active small cells based on traffic demands, which contributes to
reducing 5G HetNets power consumption without compromising QoS. Findings in [13]
further support the idea that heterogeneous cellular networks can boost EE by integrating
small BSs with an existing network of macro BSs and by reducing the transmission power of
macro BSs. In another study [14], we proved that BSs transmit (Tx) power scaling according
to variations in data traffic can contribute to the improvement of wireless cellular network
EE. A separate study [15] introduced an analytical framework emphasizing that the key to
improved EE in 5G networks lies in network densification and the adoption of advanced
multiple input multiple output (MIMO) transmission technology.

The paper [16] analyzes the EC of 4G and 5G radio access networks (RANs) in Belgium
from 2020 to 2025 with a focus on BSs as the primary energy consumers in mobile networks.
While the research highlights 5G network potential for improving EE, particularly through
the implementation of sleep mode of BS operation, it also highlights the uncertain energy
implications of 5G BS deployment. Using on-site measurements, power models were
developed for both 4G and 5G BSs, confirming that the simultaneous operation of both
networks is more energy intensive.

Using the UK as a case study, authors in [17] examined the future deployment of 5G
networks, focusing on EC from both economic and environmental viewpoints. A unique
agent-based model integrating multi-dimensional data visualization was developed for the
analyzed case study. The study found that in comparison with macro BSs, micro BSs are
the primary energy consumers in 5G networks, and this poses a challenge to local energy
infrastructures and increases OPEX for MNOs.

In our preliminary paper [5], we analyzed the challenges of implementing 5G mobile
networks, with a particular emphasis on their EE across different communities differing in
user densities. We presented standardized EE metrics for a 5G mobile network covering
an area of one square kilometer. We also explored the impact of various 5G BS deploy-
ments and operation strategies on the EE of 5G networks. Furthermore, we developed
interpolation functions to illustrate the relationship between DV and EE metrics for each
BS coverage area and deployment scenario.

Our recent work [18] examined the effects of projected data DV growth on the EE
of one square kilometer 5G radio network using standard EE metrics. We evaluated five
distinct 5G BS deployment and operational strategies across different device density classes.
The analysis shows a significant impact of increasing DV trends on the standardized data
and coverage EE metrics of 5G HetNets. Also, in [18], the method for determining the
optimal and suboptimal combinations of data and coverage EE metrics for every examined
5G BS deployment and operation strategy is presented.

The results and insights obtained in this initial work [18] serve as a key reference point
for more comprehensive analyses presented in this work. Thus, in this paper, we further
extend the model developed in [18] to assess the impact of the expected DV increase on EE
of the 5G network on the level of the complete country. The developed model is analyzed
for two European countries having 5G mobile networks with national signal coverage, as
representatives of countries having different population densities and geographical terrains.
Thus, the paper analyses the impact of the increase in transferred DV and the number of 5G
UDs on EE metrics of the 5G network during the period of 2020-2030 at the overall country
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level. The performed analyses explain how 5G network EE will be changed by 2030, due to
the increase in the number of 5G users and DVs.

3. Standardized Mobile Network Energy-Efficiency Metrics

In this work, the selected metrics for the evaluation of the 5G RANs EE are defined
by standards of the European Telecommunications Standards Institute (ETSI) [19], the
3rd Generation Partnership Project (3GPP) [20] and the International Telecommunication
Union—Telecommunication sector (ITU-T) [21]. According to these standards, the MNO
equipment considered for EE estimations can include BSs, BSs site equipment, radio
controllers, and backhaul equipment. Due to the complexity of assessing the EE of the
entire mobile network, the standards allow for the network to be divided into smaller sub-
networks for analysis. The focus of this paper is on the radio part of the mobile network
containing only the 5G BS radio equipment.

For evaluating the EE of the mobile network based on varying population densities,
the ETSI standard [19] will be used to define different UD density classes (which will also
further in the paper interchangeably be termed as the UD density areas). These UD density
classes (areas) can be further categorized based on their geographic UD densities as rural,
suburban, urban, and dense urban device-density classes [19]. For each of these UD density
classes, analyses presented in this work are based on two primary 5G network EE metrics
defined by telecommunication standards [19-21]. The first metric focuses on data capacity
and measures the mobile network data energy efficiency (EEypny py) [19]. The data energy
efficiency (EEyn py) is expressed as follows:

DVun

EEymN,pv = [bit/]], 1)
where the DVjy in Equation (1) refers to the total network DV transferred by MNO
equipment (e.g., BSs) during the specific time period in the uplink (UL) and downlink (DL)
direction. The ECyy in Equation (1) represents the total energy used by the devices (BSs)
in the network during the same time period. Essentially, this metric shows how much data
the network can transmit for every Joule of spent energy.

Table 1. Prediction of the number of 5G devices per inhabitant based on global population trends
[22-24].

World Number of 5G Number of Number of 5G Number of All
. Smartphone . . . Total Number of All
Year Population Devices/ FWA Devices/ IoT Devices/ 5G Devices/ 5G Devices (Billion)
(Billion) . Inhabitant Inhabitants Inhabitant
Inhabitant
2020 7.841 0.02 0.0005 0.03 0.05 0.39
2030 8.546 1.16 0.08 0.37 1.61 13.75

The second standardized metric used in the analyses presented in this work evaluates
the EE of the mobile network based on the size of the area covered with the 5G signal.
More specifically, mobile network coverage area energy efficiency (EEyn co4) is defined
as the ratio between the designated coverage area (CoA_desyn) of a particular MNO sub-
network and its annual energy consumption (ECyy) [19]. The network coverage area
energy efficiency (EEpn co4) can be expressed as follows:

CoA_des
EEuncoa = g [m?/]]. @

The EEpn coa metric determines how much area (in square meters) the mobile network
can cover for every Joule of spent energy. The size of the coverage geographic area
(CoA_despn) in this research work was determined for each of the four UD density classes
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(rural, suburban, urban, and dense urban). This standardized data and coverage EE metrics
are further used in this work for analyzing the EE of 5G networks.

4. Methodology and Simulation Model

In this research, simulation of analysis of the data and coverage EE have been per-
formed on the example of two specifically selected countries (Croatia and The Netherlands).
The network simulation model used for analysis is structured as 5G HetNet deployed in
different UD density classes of each country. Figure 1 illustrates the snapshot of simulated
5G heterogeneous sub-networks. They correspond to four distinct UD density classes (rural,
suburban, urban, and dense urban), comprising various amounts and types of 5G BSs and
various numbers of 5G UDs in each sub-network (Figure 1).

@ K BRTED B g lew 4 e

o) W4 @ 2
(&f)c«»)(«») ((g))‘“ ; ))).L Wa, 1| @ ¢

I((A)) 4(«-)) d (‘ ’) “‘ (c-)) ) o4 (¢.,) 8 C((K))

((( ‘ ® - Rural (area 10 km?) |:| Sub-urban (area 1 km?2)
() o
A@w ¢ ige 2

5G FWAUD I:l Urban (area 1 km?) I:l Dense urban (area 1 km?)

BS1 BS2 BS3 5GUD 5G loT UD

Figure 1. Visualization of 5G UD density classes (areas) with the allocation of 5G UDs and BSs.

In further subsections, the key simulation aspects that impact the results of analyses
are presented. More specifically, the first aspect is related to the methodology of estimation
of the projected growth and distribution of 5G UDs in 5G networks of analyzed countries.
The next aspect is dedicated to the methodology for determining BS capacity and their
allocation in the 5G HetNet environment, taking into account different user requirements
and amounts of DV. The methodology for the estimation of BSs EC is presented and the
EC model of the three different BS types used in analyses is also elaborated. Finally, the
aspect of improving 5G network EE through the implementation of four proposed 5G BS
installation and operation scenarios is introduced and explained.
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4.1. Assessment of User Device Growth

As the world rapidly moves into the era of 5G mobile networks, understanding the
growth and distribution of 5G UDs becomes critical. Technological progress has led to a
rapid increase in the adoption of various 5G devices, from smartphones to specialized FWA,
mMTC, or IoT devices. One approach to predicting the global increase in the number of
different 5G UDs during the 2020s is to relate it with the predictions of the world population
trends estimated by relevant authorities [24].

Table 1 presents for the years 2020 and 2030 an overview of the global changes in the
number of various 5G UDs, including smartphones, FWA, and IoT devices in relation to
the number of world population inhabitants. In Table 1, the predictions of the number of
5G smartphones and FWA UDs per global population inhabitants are based on Ericsson’s
mobility report [22]. In addition, the predictions of the number of 5G cellular IoT UDs per
global population inhabitants (presented in Table 1) are performed according to forecasts
presented in [23]. It is worth emphasizing that cellular IoT devices in Table 1 include both
non-mMTC and mMTC devices, while mMTC devices include the previous 4G technology
long-term evolution machine-type communication (LTE-MTC) and Narrowband Internet of
Things (NB-IoT) UDs. The reason for the inclusion of these UDs in the analyses is related to
the fact that these technologies are standardized by 3GPP as low-power wide-area (LPWA)
technologies and will continue to evolve as a part of the 5G specification [25].

The UD growth assessment for a specific country was conducted using the ArcMap
10.7.1. software, which is a component of Esri’s ArcGIS suite [26]. It is a tool for geographic
information system (GIS) mapping and analysis. The primary data source used for this
study was an official population dataset, which details the spatial distribution of estimated
population densities in the form of GeoTIFF files [27]. The GeoTIFF files contain raster-
based representations of population density per grid cell, expressed as inhabitants per
square kilometer for each observed country. The dataset derived from the GeoTIFF files
represents the country’s population density with two primary attributes, which are values
and counts.

The value attribute indicates the population density in terms of the number of inhab-
itants per square kilometer in certain grid cells. On the other hand, the count attribute
represents the number of grid cells having that particular population density. These at-
tributes can provide a calculation of the population distribution within a country, capturing
both population density and the prevalence of each density level across different parts of
the country (grid cells).

In this research, ArcMap software was used to project the number of 5G devices based
on population density datasets in analyzed countries. These datasets provided detailed
information about the population density per one square kilometer of each country for the
year 2020. The projected increase or decrease in population density for each country was
analyzed up to the year 2030 based on predictions from relevant prediction population
density sources [24]. Using this data, the expected number of inhabitants per square
kilometer of analyzed countries for the year 2030 was estimated.

Such calculated population densities for specific countries in the period of 2020-2030
serve as a reference for estimating the number of 5G devices in each grid cell of the analyzed
country. To estimate the number of 5G devices in a particular grid cell of the analyzed
country, the population density for each square kilometer was multiplied by the projected
number of 5G devices per inhabitant (Table 1) for the years 2020 and 2030. As a result, the
projected number of 5G devices per square kilometer in every grid cell of the observed
country was determined.

The graphs presented in Figure 2 show estimated trends in the expansion of the
number of 5G UDs from 2020 to 2030, for each of the observed countries. A consistent
increase in the number of 5G UDs is visible across all device categories, which indicates the
expected gradual adoption of 5G technology and corresponding UDs in various use cases
in the future. According to Figure 1, the largest share of 5G UDs in both analyzed countries
refers to 5G smartphones, highlighting the global consumer adoption of these UDs by the
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Millions

end of the 2020s. The 5G mMTC devices hold the second largest share (Figure 1), which
indicates a significant adoption of machine-type communications, which are also crucial
for the future implementation of IoT applications.
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Figure 2. Trends in the global number of 5G devices per year. (a) Croatia and (b) The Netherlands.

4.2. Characteristics of Analyzed Base Stations

In this research, three different 5G BS types named BS1, BS2, and BS3 are used for
analysis (Figure 3). The BSs were categorized into three distinct types based on their
deployment scenarios and operating characteristics, and they represent three categories of
typical BSs for which it is expected to be massively deployed worldwide. It is assumed
that the combination of these types of BSs presented in Figure 3, will be fundamental in
satisfying increasing 5G requirements as the demand for higher data rates and seamless
connectivity continues to grow. The operating parameters of three different types of 5G
BS used in the simulations are presented in Table 2. According to Table 2, each BS type
is characterized by specific operating parameters that impact the overall transmission
capacity of each BS type (Table 2).

BS1 BS2
Macro 5G BS Macro 5G BS
—

Active Antenna
Syslem (AAS) BS3
Small 5G BS

Passive
Antennas

-[ )V Coax cable
Remate |

Radio Head é
(RRH) U

Optical Fiber

Oplical Fiber

Baseband
Unit (BBU)

Basaband
Unit (BBU)

(a) (b) (c)

Figure 3. Three different BS types: (a) traditional (2G/3G/4G/5G) macro BS, (b) latest generation
macro 5G BS, and (c) small 5G BS.
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4.2.1. Base Stations Operating Parameters

In the analyses, the BS1 is assumed to be a three-sector 5G base station equipped with
a remote radio head and is typically implemented in macro-cell deployment scenarios
(Figure 3). These macro cells provide coverage and transfer traffic over wide geographical
regions. Operating in the 800 MHz frequency band (Table 2), the macro BS1 ensures long
signal penetration and propagation over large distances. The BS2 represents the next gener-
ation of macro 5G BSs, leveraging an active antenna system (AAS) design (Figure 2). An
AAS integrates the radio and antenna components into a single system, allowing for more
dynamic control of the antenna pattern and behavior. Overall, AAS can deliver improved
bandwidth and improved spectral efficiency, enabling the massive MIMO and beamform-
ing transmission in 5G networks [28]. Operating in the 3.6 GHz frequency band (Table 2),
BS2 offers a balanced approach that is appropriate for implementations in urban and dense
suburban regions, and also features a three-sector configuration (Figure 3, Table 2). The
small BS3 is designed to serve areas with high user density in micro-cell applications
(Figure 3). Operating in the mmWave 26 GHz band (Table 2), the BS3 delivers high data
rates within its relatively limited coverage area. It is a one-sector BS that ensures that
users within its vicinity have access to significantly higher throughputs than those of BS1
and BS2.

Table 2. Operating parameters of three different types of 5G BS used in the simulation analyses.

Direction of

Operating Data Trans- .
Type of BS Frequency/ fer/OFDM ANumber chl Max. no. of g agdw@ths( MHZ)/ No. of Th 5G BhS BS C .
(Number Transmission Modulation ggregate MIMO ubcarrier spacing 0.0 roughput aPamty
Component Car- (u)/Maximum no. Sectors per BS Sector (GDbit/s)
of Tx/Rx) Scheme/ Order/OFDM . . Layers .
riers/Maximum of Resource Blocks (Gbit/s)
Overhead Symbol
Duration (us)
. DL/ BW:10 MHz/
F RTlggO/g/[ﬁZ/ 6 (64QAM)/ 2 8 w15 kHz/ 3 0.52
: 71.429 52
BS1 (16T16R) UL/ BW-10 MHz/ 1.77
: z
FRTlggo/gA&IZ/ 6 (64QAM)/ 2 4 115 kHz/ 3 0.08
: 71.429 52
. DL/ BW:40 MHz/
FI%%%GI&Z/ 6 (64QAM)/ 2 8 130 kHz/ 3 2.10
’ 35.714 106
BS2 (32T32R) 724
FR1: UL/ BW:40 MHz/
3.6 GHz/ 6 (64QAM)/ 2 4 w:30 kHz/ 3 0.312
TDD/0.08 35.714 106
. DL/ BW:200 MHz/
FrT%zDe /%;Il{;/ 6 (64QAM)/ 1 16 1:120 kHz/ 1 9.97
’ 8.929 132
BS3 (64T64R) oL/ BW:200 MEz/ 11.49
. : z
FRTZI'DZS/%P{Z/ 6 (64QAM)/ 1 8 w120 kHz/ 1 1.52
. 8.929 132

According to Table 2, the operating frequency bands at which BS1 BS2 and BS3 transmit
are divided into two different frequency ranges (FRs) known as FR1 and FR2 [29]. The FR1
refers to the sub-6 GHz frequency bands traditionally used in earlier generations of mobile
networks and BS1 and BS2 operate in this FR (Table 2).

Due to their better propagation characteristics compared to those of higher mmWave
frequency bands, these sub-6 GHz frequency bands are typically used for wide-area 5G
network signal coverage. Although the majority of networks operating in sub-6 GHz bands
use frequency division duplex (FDD) transmission mode [30], due to the flexibility in UL
and DL allocation, in the analyses presented in this work, the time-division duplex (TDD)
transmission method in a 5G network was assumed for those BSs (Table 2).

The FR 2 frequency bands refer to the mmWave frequency bands, which are typically
above 24 GHz. Due to the mmWave propagation characteristics making FDD a less viable
option for practical implementations in mmWave frequency bands, these high-frequency
bands primarily use a time-division duplex (TDD) transmission scheme in practice [31].
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For that reason, the TDD was assumed as a transmission scheme for the BS3 working in
the mmWave spectrum (Table 2). These bands can offer to the UDs ultra-high data rates;
however, they have limited 5G network signal coverage and penetration capabilities.

The massive MIMO (mMIMO) technology that employs multiple antennas at both the
transmitter (Tx) and receiver (Rx) side enables significant boosts of 5G BS data throughput,
network coverage, and capacity without the need for increasing the BS transmit power
or bandwidth. In the analyses, BS1 is assumed to exploit MIMO technology with up to
16 transmitters and receivers, while BS2 and BS3 are assumed to exploit mMIMO technology
with up to 32 or 64 transmitters and receivers, respectively (Table 2).

In the context of MIMO transmissions, spatial signal multiplexing as the most im-
portant MIMO transmission feature enables the simultaneous transmission of multiple
data streams within the same time-frequency symbol, which is also known as spectrum
re-use. These transmissions of the concurrent data streams are typically identified as MIMO
signal layers, which can be directed to a single UD or distributed among multiple UDs.
The primary advantage of spatial multiplexing lies in its potential to enhance both user
throughput and overall network capacity [32]. The maximal number of MIMO layers in DL
and UL transmission for BS1, BS2, and BS3 differs between 4 and 16 in accordance with BSs
MIMO and mMIMO transmission capabilities (Table 2).

4.2.2. Base Stations Capacity Modeling

Within the frame of the 5G new radio (NR) technology, various operating parameters
can impact the throughput capabilities of a 5G BS. Besides those operating parameters
already stated in the previous section, other operating parameters that impact the 5G
BS transmission capacity are the number of aggregated signal component carriers, the
bandwidth of transmission channel, subcarrier spacing (SCS), signal modulation order, the
number of used transmission resource blocks, and the type of transmission mode (UL or
DL). In Table 2, the values of those operating parameters for three different types of 5G BS
used in the analyses are presented.

Carrier aggregation (CA) is an important feature of 5G systems that enables aggre-
gating multiple signal component carriers in data transmission and reception to enhance
network performance. By combining two or more signal carriers, either within the same
frequency band or across different ones, CA creates a unified aggregated wireless channel,
thereby optimizing spectrum use [33]. According to Table 2, the BS1 and BS2 exploit the
concept of CA having two aggregated component carriers (Table 2). Due to the operation at
high frequencies that offer high throughputs, the CA in the operation of BS3 is not modeled
and BS3 operates at one component carrier (Table 2).

Additionally, the 5G BS signal in the time and frequency domains is described using a
set of parameters referred to as numerology. The primary parameter in 5G BS numerology
is the SCS. The SCS value (i) determines the distance between the two adjacent subcarriers
in 5G BS orthogonal frequency division multiplexing (OFDM) transmission [34]. The
maximum OFDM modulation order equal to 6 (64 QAM) is assumed in the analyses for DL
and UL communication for BS1, BS2, and BS3 (Table 2). The flexibility in 5G numerology
allows the 5G BS transmission system to be optimized for different use cases, ranging from
serving UDs in high-speed vehicle mobilities to dense urban deployments, or from massive
IoT connectivity to URLLC communications. By adjusting the numerology, 5G BSs can meet
the different requirements for versatile 5G network use cases. For analyses performed in
this paper (Table 2), SCS values for BS1, BS2, and BS3 are selected to be 15 kHz, 30 kHz, and
120 kHz, respectively. These SCSs are selected as values that are appropriate for satisfying
most of the 5G network use cases served by the corresponding BS type.

Furthermore, the BS1, BS2, and BS3 are assumed to operate at 10 MHz, 40 MHz,
and 200 MHz channel bandwidths (Table 2), respectively. These values of bandwidths
(BW) represent a typical channel bandwidth of 5G BSs operating at 800 MHz, 3.6 GHz,
and 24 GHz (Table 2), respectively. The resource block as the fundamental unit of the
BS frequency-time resource distribution divides the available bandwidth of the 5G BS
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into a grid of time and frequency resources, with 12 subcarriers in one time slot of the
resource block. Based on SCS and channel bandwidths, the BS1, BS2, and BS3 use 52, 106,
and 132 resource blocks (Table 2), respectively. Also, different overheads representing the
portion of the available bandwidth and resources that are consumed by necessary control,
management, and protocol functions have been used in the calculation of each BS capacity
(Table 2). According to Table 2, the selected transmission overheads correspond to values
ranging from 0.08 to 0.14 for different UL and DL transmission configurations of BSs.
According to the stated BS operating parameters, the 5G NR BS data rates (DR) can be
calculated as in [35], which is based on expression standardized by 3GPP TS 38.306 [36]:

C . . I\[BW(C),y.12
DR = 10~6- Z% (U(L;yers,an)_f(C),Rmx.PRl;g. (1 — OH(C)) ) [Mbps], 3)
c=

where Ry, = 948/1024, the C represents the maximal number of aggregated signal com-
ponent carriers indexed as c = 1, ... ., C, within a specific frequency band or combination
of bands, u refers to the value of numerology parameter SCS, and Tg denote the average
duration of an OFDM symbol within a subframe for the given numerology parameter SCS

(€)
Layers
represents the number of MIMO layers supported for both DL and UL communication,

which is equal to T;‘ = %. For the c-th component carrier in Equation (3), the v

Q,(ﬁ ) indicates the OFDM modulation order for DL and UL communication (equal to 6 for

64QAM), f (©) is the scaling factor (with possible values of 1, 0.8, 0.75, and 0.4), Nﬁp;(a),y
defines the number of maximum allocated resource blocks in bandwidth BW ©) with the
specified SCS, and OH(¢) represents overhead for the c-th component carrier.

Each BS has a certain maximum capacity, which indicates the largest amount of data
that the BS can transfer in a certain period of time. The maximal BS capacities used in
simulation analyses performed in this paper have been calculated in this work according
to Equation (3). Table 2 indicates the calculated maximal capacities per sector and overall
capacities of BS1, BS2, and BS3.

4.2.3. Base Stations Allocation Principle

ETSI standard in [19] defines rural, suburban, urban, and dense urban UD density
classes (areas). The UD density classes are defined as square kilometer areas containing
the specific overall number of UDs. Table 3 shows different UD density classes (areas)
that are categorized as defined in [19]. Each class has an associated UD density range,
which indicates the range of density of UDs per square kilometer (Table 3). For the research
presented in this paper, the area of the complete country is divided into square kilometers
UD density classes (areas) and characteristic examples of these UD density areas are
illustrated in Figure 1.

Table 3. UD density class parameters and number of allocated BS1 per UD density class.

Average Data Rate per

oy wpmy NURMABTT A sy e
Rural 0-200 0.075 0.1 20%
Suburban 200-1000 0.075 1 20%
Urban 1000-10,000 0.35 2 10%

Dense urban >10,000 0.22667 4 30%
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Table 4. 5G BS power consumption and shares of variable BSs in the total number of variable
BS[17,37,38].

Average Instantaneous

Instantaneous Power Instantaneous Power Power Consumption of Distribution of
Consumption of BSS Consumption of BSS amp Variable BSs in the
Type of BS . . . .. BSS with BSs
with BS Operating in with BSs Operating in Operating in Tx Power Total Number of
Active Mode (W) Sleep Mode (W) Scaling Mode (W) Variable BSs
BS1 (16T16R) 10,500 N/A 8400 N/A
BS2 (64T64R) 8500 850 6800 30%
BS3 (64T64R) 1200 120 960 70%

In addition, to make the simulation model as realistic as possible, an activity factor for
each UD density class is used for expressing the real UD activity in the network. Simulation
of UD activity in the analyses is performed according to UD activity factors presented in
Table 3, which are defined according to technical specifications [39,40]. The activity factors
shown in Table 3 represent the percentage of the amount of simultaneously active UDs
in relation to the overall number of UDs, where active means that the UDs are actively
transmitting or receiving data over the network. Since most UDs do not constantly transmit
or receive the data during the day, the activity factors for each UD density area represent
the percentage of UDs that are simultaneously active, meaning they are engaged in data
transmission or reception at a given time, relative to the total number of UDs in that area.
For example, an activity factor of 20% in Table 3 for rural UD density areas indicates that,
on average, at the same time 20% of UDs are actively exchanging data over the network.

Table 3 additionally presents the simulated average UL and DL data rates per active
UD for each UD density class (area) defined in the technical specification [39,40]. The
average UL and DL data rates present the sum of data rates that need to be supported by
the BSs in UL and DL transmission per active user. To accommodate such UL and DL traffic
volumes of UDs in different UD density areas, where each area has a different activity
factor representing the percentage of UDs that are simultaneously active, different numbers
of BSs are allocated within a square kilometer area for each UD density class (Figure 1).

In the analyses, the fixed number of installed base station sites (BSSs) having one
BS1 per corresponding UD density class is assumed (Table 3). According to Figure 1 and
Table 3, in the case of rural UD density area, one macro BS1 is permanently allocated per
10 km?, and one, two, and four macro BS1s are assumed to be allocated per the one square
kilometer of the suburban, urban, and dense urban UD density areas (Table 3), respectively.
Such an assumption in the allocation of macro BS1s in simulations is a consequence of the
need to ensure minimal signal coverage and minimal DV capacities in the corresponding
UD density areas.

The remaining types of BSs (BS2 and BS3) are allocated according to the assessment of
the needs dedicated to accommodating variations in the number of UDs and corresponding
DVs in specific UD density areas. For that reason, the BS2 and BS3 types of BSs are named
in this paper as “variable” BSs, since their allocation number varies in time (period from
2020 to 2030) according to UD densities (DV variations) and the needs for satisfying network
EE constraints. According to Table 4, the share of BS2 and BS3 in the total allocated number
of variable BSs is set to 30%/70% ratio (Figure 1), respectively. These BSs share is set
arbitrarily according to the reasonable assumption that a significantly larger number of
small BS3 are expected to be allocated in practice in comparison to the macro BS2 type
of BSs.

4.3. Base Station’s Power Consumption

In terms of the number and amounts of EC, the BSs in 5G RAN are predominant
components that have a considerable contribution to the total EC of the MNO network. A
study in [41] emphasizes that the RAN and especially the 5G BSs are the primary energy
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consumers in mobile networks, accounting for 57% of total network energy use. This fact
points out that the 5G BSs represent a key network element that can be exploited for the
potential improvement of 5G network EE.

The three main contributors to the 5G BS site (BSS) power consumption are BS site an-
cillary equipment, the activities related to the BS transmission, and signal processing [42,43].
The power consumption related to the radio transmission processes refers to the energy
utilized by BS power amplifiers, AAUs, and radio frequency (RF) transceivers involved
in converting baseband signals to wireless signals and their transmission. The power
consumption related to signal processing involves the energy that BS baseband units (BBU)
consume for digital signal processing, BS management, and BS communication with the
backhaul (core) network. The power consumption of ancillary equipment includes the
power losses due to conversions from the grid power supply to the primary power supply
(AC/DC conversion and backup power systems), the power losses due to different DC-DC
conversions and, for some types of macro BS sites (BSSs), the power consumption of active
cooling, internal lighting, security system, and monitoring devices.

Table 4 summarizes the levels of the BSS instantaneous power consumption used in
the analyses presented in this work. The presented BSS power consumptions are assumed
for BSSs having only one 5G BS installed on the BSS. According to Table 4, three different
activity modes of BSs are assumed in simulations (active, sleep, and Tx power scaling
mode), and for each of the BS activity modes, the BSS instantaneous power consumption
has been presented. In Table 4, the instantaneous power consumption of BSS with BS at full
load assumes the active operating mode of BSs and transmission utilizing full BS capacity at
maximum Tx power in all BS sectors. The instantaneous 5G BSS power consumption at full
load presented in Table 4 for BSS having installed single BS1 [37], BS2 [38], and BS3 [17] are
typical power consumptions of 5G BSS operating with BS radio configurations presented
in Table 2. In Table 4, the presented BSS instantaneous power consumptions for 5G BSs
in active mode at full load take into account all three main contributors to the 5G BSS
power consumption that are previously described. Only in the case of small BS3, the power
consumption of the ancillary BSS equipment is not accounted in maximal instantaneous
power consumption at full load, since such types of BSs use natural air cooling and do not
need an external cooling system or other ancillary BS site equipment.

Considering that many BSs in active operating mode are underutilized for a significant
amount of their operational time and yet continue to consume energy, the analyzed 5G BS
installation and operation scenarios exploit this observation for potential energy savings.
In particular, analyses presented in [44,45] suggest a strategy that involves switching
BSs to sleep operating mode during low-traffic periods, which can result in significant
EC reductions.

Thus, besides the active mode of 5G BSs, Table 4 also indicates the values of the 5G
BSS instantaneous power consumption for BSs operating in sleep modes. It is assumed in
simulations that the sleep BS operating mode is an energy-saving operation mode of BS
that accounts for 10% of the instantaneous power consumption of active 5G BSs operating
with full load [46]. The sleep BSs operating mode is assumed in simulations as the inactive
operating mode of BSs in which all major BSs components (power amplifiers, AAUs, RF
chains, BBUs, etc.) are turned off for energy saving and only essential components needed
for quick translation of BSs from sleep into active mode are operating. Table 4 also indicates
that the power-saving operating mode is not applicable for macro BS1, since this BS type is
assumed to be constantly active for ensuring basic network signal coverage and capacity.

Besides the 5G BSs sleep mode of operation, Table 4 also indicates the values of 5G BSs
instantaneous power consumption operating in the power-saving mode. The power-saving
mode is the 5G BS operating mode that assumes the usage of Tx power scaling techniques
dedicated to improving the EE of BSs. Such techniques include the BS Tx power scaling
performed according to the variations in the number of served UDs and corresponding
DVs. According to Table 4, the maximal instantaneous power consumption of the 5G
BSs operating in power-saving mode is estimated to be 80% of the total instantaneous
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power consumption of active BSs operating at full load at maximal Tx power. This mode of
operation is utilized in analyses since it was confirmed in [14], emphasizing that adjusting
the transmission power of the BSs according to spatial and temporal DV fluctuations can
further improve the EE of mobile networks. Therefore, this analysis adopts a conservative
assumption, proposing a 20% reduction in average instantaneous BSS power consumption
compared to the power consumption of BSS having BS always operating in active mode at
maximum Tx power and loads.

4.4. 5G BSs Deployment and Operation Scenarios in RAN

Due to the permanent increase in the number of 5G UDs and the need to ensure higher
data rates for the 5G UDs in the future, a significant increase in the number of 5G UDs and
DVs within the 5G HetNet of each of the analyzed countries is predicted during the 2020s
(Figure 2). To accommodate this increase in the number of UDs and DVs, in this research,
four different 5G BSs installation and operation scenarios are simulated and analyzed at
the level of the complete countries. Table 5 summarizes information about all simulated
5G BSs deployment and operating scenarios. Different 5G BSs deployment and operation
scenarios have different impacts on 5G HetNet EE metrics, and the scope of this impact is
analyzed in this work.

In all simulated scenarios, the 5G BS installation approaches take into account the
common practice of MNOs, which involves the initial deployment of a predetermined fixed
number of macro 5G BSs (simulated as BS1 in this work) in each UD density area (Figure 1).
The amount of allocated BS1 BSs in each simulated UD density area corresponds to the
number of BSs needed to provide basic signal coverage and capacities within a given UD
density area. According to Table 3, the number of these BSs is fixed for each UD density
area (class), and it is equal for each simulated scenario (Table 5). On the other hand, in
different simulation scenarios, the number of variable BSs (BS2 and BS3) varies based on
changes in the number of UDs that need to be served and their DV variations. Also, in
different scenarios, usage of 5G BSs activation and operation strategies differs from the
lack of any BS installation and RRM techniques that can contribute to the improvement of
network EE, or to exploiting different RRM techniques that contribute to the 5G network
EE improvement (Table 5). These differences in terms of installation and the operation of
5G BSs among the simulation scenarios are described in the next subsection.

4.4.1. Description of Simulation Scenarios

In simulation Scenario 1 (Table 5), the installation of variable BSs (BS2 and BS3) is based
on future trends in DV requirements for the observed country. As DV demand increases in
certain locations, the number of variable BSs (BS2 and BS3) is installed accordingly. This
scenario does not use any RRM techniques to optimize the EE of BSs. Therefore, 5G BSs
operate at their peak power consumption during their operating period with full radio
resources activated independently on changes in DV intensity (Table 5).

Scenario 2 is based on the preinstallation of all variable BSs required for the projected
maximum DV in the specific UD density area (class) for the observed year of every analyzed
country (Table 5). Some of the preinstalled variable BSs remain in sleep operating mode
during periods of low UDs network capacity demand and are activated in the periods
when the capacity demand increases.

This scenario introduces utilizing an EE BS sleep mode technique which ensures that
the maximum number of variable BSs are in this sleep operating state, consuming 10% of BS
full load power consumption (Table 4). As capacity demand increases, any of the variable
BSs that are in a sleep state can be activated. However, the macro BS1 BSs remain operating
in active mode without applying any of the RRM techniques.
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Table 5. Simulated 5G BSs deployment and operating scenarios.

Scenario

5G BS Installation Strategy

5G BS Activation
Strategy

Implemented EE Technique

Level of EC Optimization

Scenario 1

Increase in installed number
of variable BSs in
accordance with future UDs
growth by 2030.

The activation of the
variable 5G BSs based on the
increase in the number
of UDs.

All BSs do not use any
EE technique.

Reduced network EC due to
the gradual installation of
new 5G BS according to an

increase in the number
of UDs.

Scenario 2

Preinstallation of all variable
BSs based on projected
maximum DV for the
observed year.

Preinstalled variable BSs
remain in sleep operating
mode and enter active
operating mode when UD
capacity demand increases.

Macro BS1 does not use any
EE technique and variable
BSs (BS2 and BS3) utilize the
sleep operation
mode technique.

Reduced network EC due to
inactive variable BSs that
consume in sleep mode of
operation 10% of the full

load maximal
power consumption.

Scenario 3

Preinstallation of all variable
BSs based on projected
maximum DV for the
observed year.

All BSs are constantly
operating at the highest Tx
power exploiting all radio

resources during
their operation.

All BSs do not use any
EE technique.

No EC optimization (all BSs
operate constantly utilizing
all resources without any
energy-efficient radio
resources management).

Scenario 4

Increase in installed number
of variable BSs in
accordance with future UDs
growth by 2030.

All BSs are constantly
operating in an active state.

Macro and variable BSs
utilize the Tx power scaling
operation technique based
on UDs time and

Reduced EC due to the
gradual installation of new
5G BS according to an
increase in the number of
UDs. Energy savings of up
to 20% for BS in the active

space variations. . e
P operating mode utilizing Tx

power scaling mode.

Scenario 3 represents the traditional BS installation and operation strategy where all
anticipated variable BSs (BS2 and BS3), needed for satisfying the maximum DV of the
specific UD density area for the observed year, are preinstalled according to maximal
capacity needs (Table 5). In this scenario, all BSs remain in an active state during their
operation, regardless of the actual need for transmission of DV. In this scenario, all BSs do
not employ any RRM techniques for improving EE based on changes in the number and
DV of UDs. Therefore, this approach to the installation and operation of 5G BSs in this
simulation Scenario 3, does not employ any strategy for the improvement of 5G HetNet EE.

Similar to simulation Scenario 1, in simulation Scenario 4, the variable 5G BSs are
progressively deployed according to the DV growth during the 2020s (Table 5). Additionally,
this operation scenario introduces Tx power scaling to dynamically adapt the Tx power of
BSs to DV variations, thus partially adjusting the instantaneous power consumption to data
traffic variations. By utilizing Tx power scaling based on DV variations, it is possible to
achieve energy savings of up to 20% compared to transmissions without the employment
of such an RRM technique (Table 4). Notably, this RRM technique dedicated to improving
network EE based on BSs Tx power scaling according to UD traffic activity is applied to
both macro and variable BSs.

Due to the simulation model simplification, simulation analyses were performed by
assuming full coverage of the analyzed countries with mobile network signal, and this
coverage includes areas with demanding geography reliefs that have been unpopulated
and in reality are uncovered with mobile network signal. Also, due to the simplification
of the simulation model, the performed simulation analyses do not take into account the
impact of changes in the number of UDs caused by tourist movements on the mobile
network energy consumption.

4.5. Characteristics Comparisons of the Simulation Model

The network simulation model used in this study represents a notable advancement
over those in our prior works which were focused on analyzing 5G network EE using
static UD areas and DVs [5,18]. In contrast, the simulation model in this study incorporates
dynamic projections of UD growth based on GIS allocation of UDs in four distinct UD den-
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sity areas for Croatia and The Netherlands during the 2020s. This provides a significantly
more realistic simulation of the increase in the number of UDs and corresponding traffic
growth, consequently resulting in a more realistic assessment of 5G HetNet capacity needs
over time.

Also, key differences compared with previous studies [5,18] include the introduction
of three distinct BS types (BS1, BS2, and BS3), each operating across different frequency
bands (FR1 and FR2). The introduction of three BS types expands the analysis to different
frequency ranges (FR1 and FR2), with BS1 operating at lower frequencies (800 MHz in
FR1) for broader coverage, BS2 functioning at mid-band frequencies (3.6 GHz in FR1) to
balance coverage and capacity, and BS3 designated to ensuring high-throughputs and
localized deployments operating in millimeter-wave frequencies (26 GHz in FR2). This
contributes to a significant improvement over the previous simulation models presented
in [5,18], which are based on the general BS model without the granularity of exploiting
specific BS configurations across different frequency ranges and operating parameters. This
inclusion of different BS models allows for a more detailed analysis of EC and capacity
under real-world conditions.

In our earlier studies [5,18], five distinct BS installation and operation scenarios have
been used to explore the impact of DV growth on EE metrics. In this work, we retain four
of the five original scenarios, shifting the focus toward more comprehensive energy-saving
strategies. More specifically, this work emphasizes the possibility of dynamic adaptation of
radio resources of all BSs to network conditions, rather than selectively applying Tx power
scaling to only certain BS types.

In addition, the BS capacity modeling in this paper introduces more detailed calcula-
tions for the BS data volume capacities than those in [5,18], incorporating parameters like
bandwidth, subcarrier spacing, modulation order, and transmission overheads. This en-
ables the modeling capacities of different BS types that better reflect real-world deployment
and performance under different practical implementations.

One significant enhancement of the simulation model used in this work over pre-
viously used models in [5,18] is the shift from a generalized user activity factor applied
uniformly across all UD density classes (areas) to an analysis performed with UD density
class-specific activity factor. In previous simulation models used in [5,18], the activity
factor presents a percentage of the maximum UD density across various UD density classes,
and the analysis was conducted without distinction among different UD density classes
(areas). However, in this work, the activity factor is specific to each UD density class (rural,
suburban, urban, and dense urban). This approach more accurately simulates realistic
UD data traffic patterns by taking into account the percentage of UDs that are actively
transmitting or receiving data in each UD density class (area). Such an approach enables the
model to reflect the actual temporal and spatial variability of network load across different
UD density areas (classes). Thus, the use of class-specific activity factors ensures a more
realistic and precise estimate of the EE metrics for different UD areas of 5G HetNet, as it
captures the behavior of unique DV patterns for each UD density area.

Additionally, a key advancement of the simulation model in comparison with simula-
tion models used in previous works [5,18] is in the use of country-specific projected trends
in changes of DVs (in Croatia and The Netherlands), for simulating 5G HetNets behavior
during the 2020s. This approach differentiates this simulation model from our prior studies
that rely on a more generalized representation of changes in DV trends.

Thus, the simulation approach proposed in this work enables a more precise analysis
of changes in 5G network EE, that is based on the unique UD density areas of each country.

5. Analytical Framework for Estimating 5G Network Energy Efficiency

A comprehensive analytical framework that establishes the basis for an evaluation of
data and coverage 5G network EE for selected countries is introduced in this section. The
Equations (1) and (2) serve as a basis for evaluating the changes in the two EE metrics of
the 5G mobile network in each country during the 2020s. Table 6 presents parameters used
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in this work for expressing the analytical framework based on which the analyses of 5G
mobile networks EE for each country were performed. Let j be an index representing UD
density classes (areas), defined asj=1, 2, ..., M, where M = 4 is the total number of UD
density classes (Table 3). Also, let s be an index representing the simulated 5G network
installation and operation scenario under consideration, defined ass=1, 2, ..., S, where
S = 4 corresponds to the total number of analyzed simulation scenarios (Table 5). Let  be
an index representing individual one square kilometer areas within the j-th UD density
class, definedas =1, 2, ..., Ljs, where Ljs represents the total number of individual
one square kilometer areas associated with the j-th UD density class of the s-th simulation
scenario. Additionally, let i be an index representing a 5G UD within the j-th UD density
class, defined asi=1, 2, ..., N is» where Njs is the maximal number of 5G UDs in the j-th
UD density class of the s-th simulation scenario. Lastly, let k be an index representing BSS
with a specific BS type defined ask =1, 2, ..., K, where K = 3 represents the total number
of different BS types used for the EE assessment (Tables 2 and 3).

In assessing 5G network EE, a key parameter is the total area of the specific UD density
class of a country. This parameter measures the total geographic area in square kilometers
with a certain density class of 5G UDs and thus indicates the extent of that UD density
class within the country. The total area of the UD density class for a specific country
(COA 45 MN].S) is defined as follows:

Lis .
COAgesnn, = Y11 s [kmﬂ, Vi=1..,MAVs=12,...,8 @)

where a;;; represents the I-th individual one square kilometer area of the j-th UD density
class in the s-th simulation scenario.

5.1. Estimation of Transferred Data Volume in UD Density Areas

In the evaluation of mobile network EE, it is important to know how much data is
transferred between BSs and UDs in specific UD density classes. The total number of 5G
devices for the j-th UD density class in the s-th simulation scenario (Njs) was calculated
from the population dataset obtained in the form of GeoTIFF files (Table 1). It is represented
as the sum of all 5G UDs in the specific UD density class (area) as follows:

No=Y " Dy, ¥j=1 ..., MAVs=12 ..., 8 )

where D)js is the number of 5G devices in the I-th square kilometer area of the j-th UD density
area of the s-th simulation scenario. This parameter serves as the basis for determining
the DV and required number of allocated BSs per UD density class. Thus, the total DV for
the j-th device density class in the s-th simulation scenario (TDVj,) is calculated using the
next equation:

TDVj, = Y% ADR;; [bit/s], ¥j=1,..., M AVs=1,2, ..., S ©6)

where ADR;; is the average data rate of the i-th UD in the j-th device density class that
needs to be ensured by the 5G network to each UD at any moment. The values of ADR;;
are defined in Table 3 for UL and DL transmission and these values are recommended in
technical specification [39,40] as estimated values of UD data rates for each UD density class.
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Table 6. Parameters used in analyses.

Index/Parameter Definition
c Aggregated signal component carriers (c =1, ..., C)
j UD density classes/areas (j =1, 2, ..., M; M =4)
i UD in the j-th UD density class/area (i =1, 2, ..., Nj)
1 Square kilometer areas of the j-th UD density class (I =1, 2, ..., L]vs)
k BStypes (k=1,2, ..., K; K=23)
s Set of BSs installation and operational scenarios (s =1, 2, ..., S; S =4)
COA4es MN, Total surface of the j-th UD density class (area) of the s-th simulation scenario
ayjs Number of the I-th individual one square kilometer area of the j-th UD density class in the s-th simulation scenario
Njs Number of all UDs in a j-th UD density class (area) of the s-th simulation scenario
Dy Number of 5G devices in the I-th square lfilomet'er area for' the j-th UD density class (area) of the s-th
simulation scenario
ADR;; The average data rate for the j-th UD density class (area)
AF; UD activity factor for the j-th UD density class (area) of the s-th simulation scenario
TDVjs Total DV for the j-th UD density class (area) of the s-th simulation scenario
ADYV; Average DV per km? for the j-th UD density class (area) of the s-th simulation scenario
SADVjs Scaled average DV per km? for the j-th UD density class of the s-th simulation scenario
DV, axBsk Maximal/total DV transferred by BS of k-th type in the j-th UD density class
RADYV; Remaining average DV per km? (ADVj) in the j-th UD density class of the s-th simulation scenario
RSADYV; Remaining scaled average DV per km? (SADYVj) in the j-th UD density class of the s-th simulation scenario
DV, axBSk DVyyaxpsk is the maximum DV capacity that BSs of k-th type can transfer
rBsk DV distribution ratios for the k-th BS type
Countps,. Number of preinstalled BS1 BSs per square ki.lomete.r that is equal for each j-th UD density class of every s-th
s simulation scenario
Countsyjs Number of variable BSs in the j-th UD density class of the s-th simulation scenario installed according to the
amount of RADV;
Countygenr. Number of variable BSs in the j-th UD density class of the s-th simulation scenario installed according to the
s amount of RSADV;
IPCjs Instantaneous power consumption of 5G network for the j-th UD density class (area) of the s-th simulation scenario
IPCpggy Instantaneous power consumption of 5G BS of the k-th type
PCSpgx Power consumption of k-th BS type operating in sleep mode
PCTxpgy Instantaneous power consumption of 5G BS of the k-th type in the Tx power scaling operating mode
EEumnpv, Data EE metric (amount of data transferred perCl lefrfl; ‘;)Iitc;)cr;sglarz(e)zl)energy in the observed device density class for
EEmncon, Coverage area EE metric (size of area covered gieflf‘eli‘r;ril’tt (;fc gr(:;l:ilcl)rsr)led energy in a specific device density class for
DR Overall BS data rate
(L”a)yers Number of MIMO layers per component carrier ¢
Qﬁ,? Modulation order for DL/UL communication per component carrier ¢
f© Scaling factor per component carrier ¢ (f(©) =1, 0.8, 0.75, and 0.4)
Nglz‘g(c)’“ Number of resource blocks in bandwidth BW © per component carrier ¢
OH') Overhead percentage of the portion of the available bandwidth for the c-th component carrier
ECpN Annual EC of mobile network or sub-network
DVun Total network DV transferred by MNO equipment in RAN

T

Time period equal to one year
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To determine the EE metrics of a 5G mobile network for a specific country, the average
DV per square kilometer of the j-th UD density class in the s-th simulation scenario (ADVjs)
was exploited in the analyses. This parameter provides an understanding of how much
average DV is generated by all UDs in every square kilometer area of the j-th UD density
class of a country. The average DV per square kilometer of the j-th UD density class (area)
in the s-th simulation scenario is formulated as follows:

TDV,
ADVj = [bit/s/kmz], Vi=1 .., MAVYs=12..5S (7
COAolesMN]-S

Based on ADVjs, the number of BSs that need to be allocated in the square kilometer
of the j-th UD density area can be determined, and, thus, the EC of allocated BSs can be
estimated. However, the average area DV per square kilometer of the j-th UD density class
(ADVijs) do not reflect the real DV amounts of UDs in 5G networks and for estimation of
real DV variations in the j-th UD density class, the scaled average DV per square kilometer
of the j-th UD density class (SADVj;) need to be utilized. More specifically, the average
area DV per square kilometer for the specific UD density class (ADVj) is scaled with an
activity factor of UDs in the j-th UD density area (AF;) in order to be:

SADVj, = ADVj, x AF;, [bit/s/kmz], Vi=1 .., MAYs=12..,5 (8

where the activity factor (AFjs) is defined according to the technical specification [39,40]
(Table 3), and is thus a multiplier that adjusts the average DV to account for the usage of
real DV patterns of the UDs in the specific UD density area. Thus, SADVs is the scaled
average DV per square kilometer of the j-th device density class in the s-th simulation
scenario. It is a measure of network demand that reflects both, the number of UDs and
their real daily DV intensity variations within the j-th UD density area.

5.1.1. Estimation of Transferred Data Volume in Specific Simulation Scenarios

For each of the analyzed scenarios, different approaches to 5G network power con-
sumption and EE estimation were utilized. For example, in Scenarios 1 and 4 of the 5G
network EE assessment, the focus is on adapting the 5G network infrastructure and RAN
resources to meet realistic DV requirements (Table 5). This adaptation includes adjusting
the number of installed variable BSs (BS2 and BS3), the sleep state activations and de-
activations of variable BSs (in Scenario 1), and transmission power scaling of all BSs (in
Scenario 4). In analyzed scenarios, network planning in terms of the number of installed
5G BSs primarily relies on satisfying the trend of increase in DV caused by an increase
in the number of 5G UDs during the 2020s. Additionally, Scenarios 2 and 3 include the
preinstallation of all variable BSs needed for accommodating the total average network DV
transferred per square kilometer (ADV;) for the observed year (Table 5). Scenarios 2 and
3 also involve preinstalling variable BSs according to projected maximum DV capacity
needs during the 2020s and their activation according to realistic DV variations (SADVj)
in specific UD density areas (Table 5). Thus, simulation scenarios require the use of both
ADVj and SADV; parameters to accurately simulate network operations and data servicing
requirements. These differentiated approaches in using ADV; and SADV; parameters in
analyses of different scenarios, reflect the versatile operating conditions of 5G networks
which enables a comprehensive simulation analysis of 5G network EE in different countries.

Besides the average (ADVjs) and scaled area DV (SADVjs) per square kilometer of
the j-th UD density class in the s-th simulation scenario, the calculation of the remaining
average DV per square kilometer (RADVjs) and the remaining scaled average DV per
square kilometer (RSADVjs) of the j-th UD density class in the s-th simulation scenario is
also performed. Both remaining DVs are DVs that are transferred by variable BSs (BS2 and
BS3). These DVs exclude the DV transferred by the preinstalled BS1 BSs and are calculated
according to the next equations:
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RADVj, = ADVj, — (COMntBSljS x DVmMBSl> [bit/s/kmﬂ’ Vi=1,..,MAVYs=12 ..., 8 9)
RSADV, = SADV, — (Count351js x DVmBSl) [bit/s/ka], Vi=1..,MAVYs=12 ...,S (10)

COMTli’BSk]‘S =

CountBSkAFjS =

The Countp s1j, in Equations (8) and (9) indicate the predetermined number of BS1 BSs
installed per square kilometer in the j-th UD density area (presented in Table 3 and Figure 1)
and the DV,,,,ps1 represent the maximal DV capacity of the BS1 (calculated according to
(3) and presented in Table 2). Thus, the RADVjs in Equation (8) is the remaining average
DV per square kilometer of the j-th UD density area that excludes the DV transferred by the
BS1 BSs. This remaining average DV per square kilometer (RADV)) is further utilized in
determining the total number of allocated variable BSs (BS2 and BS3) in the j-th UD density
area of the s-th simulation scenario. The RSADVjs in Equation (9) indicates the remaining
scaled average DV per square kilometer of the j-th UD density area which excludes the DV
transferred by the BS1 BSs. The remaining scaled average DV per square kilometer (SADV;)
is further utilized in determining the number of variable BSs (BS2 and BS3) operating in
active or sleep mode, that are needed for the transfer of remaining DVs which will not be
transferred by BS1 BSs.

5.1.2. Estimation of the Number of Installed Base Stations in the UD Density Area

When planning the deployment of telecommunications infrastructure, it is essential to
consider the varying demands for DV transfer of different geographic UD density areas.
To efficiently allocate resources while meeting these demands, equations for calculating
the required variable BSs number for each UD density class are further developed. Based
on the determined remaining average DV (RADV;) and the remaining scaled average
DV (RSADYVj) for the j-th UD density area, the number of variable BS (BS2 and BS3) per
square kilometer can be estimated by taking into account the DV capacities of each BS
type (presented in Table 2 and calculated based on (3)). While the number of BS1 BSs
remains constant for each square kilometer due to the need for providing basic network
coverage and capacity within specific UD density area (Figure 1, Table 3), the estimation of
the number of installed variable BSs is a simulation scenario dependent and is determined
by utilizing either the RADVjs or RSADVjs parameter. This ensures that the network
infrastructure is efficiently adapted to meet the different DV demands of different UD
density areas of specific countries for every analyzed simulation scenario.

The number of variable BSs (of type k > 1) that are required for transferring the
RADVjs and RSADVjs of the j-th UD density class in the s-th simulation scenario is calcu-
lated according to the following equations:

|:RADV]5 X TBSk

2 . o
DVmaxgss Ml/km } Vi=1,..., MAVk>1AVs=1,2,...,8 (11)

|:RSADV]5 X TBSk

][1/km2}, Vi=1 .., MAVk>1AVYs=12...,8 (12)
DVmaxBSk

where Countpg Sk;s is the number of variable BSs per square kilometer of the k-th type (BS2
and BS3) allocated for transfer of the RADVjs in the j-th UD density area for the s-th
simulation scenario, the Countgg 4 Fq is the number of variable BSs per square kilometer of
the k-th type allocated for the transfer of the RSADVj, in the j-th UD density area of the s-th
simulated scenarios, the rggi represents the DV distribution ratio among the variable BSs
of type k > 1 (BS2 and BS3), and DV,;,,,psy is the maximum DV capacity that BSs of type
k > 1 (BS2 and BS3) can transfer. To distribute the transfer of RADV}s or RSADVs among
variable BSs (BS2 and BS3), the distribution ratio equal to 30%/70% between the number
of installed BS2 and BS3 is utilized (Table 4). Thus, the values of BS distribution ratios in
Equations (11) and (12) equal to rgsp = 0.3 and rps3 = 0.7 (Table 4). Thus, it is assumed
that a larger number of small BS3 will be allocated in practice in comparison with a smaller
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number of allocated macro BS2, and the 30%/70% distribution ratio is arbitrarily selected
based on reasonable assumption.

5.1.3. Estimation of Instantaneous Power Consumption of UD Density Area
Based on the calculated number of variable BSs installed per square kilometer (Countp Sk

and Countggya Fjs), the instantaneous power consumption (I PC js) of BSs allocated in the
j-th device density class of the s-th simulation scenario can be calculated. Due to differences
in BS installation and operation management strategies among simulated scenarios, for
each simulation scenario, a different equation for the calculation of the IPCjs is developed.
Given that there are three types of BSs (k = 3), each with different instantaneous power
consumptions at specific DV loads and modes of activity (Table 4), the BSS instantaneous
power consumption per square kilometer for each UD density class in Scenario 1 (IPCj;)
can be formulated as follows:

IPC]S = IPCBSl X COL[I’ZtBSljS + ZkK:2 IPCBSk X CountBSkAFjS {W/km2:|’ V] =1, ..., MAs=1 (13)

K
IPC]'S = [PCpgy X COuVltBSljs +k22[<Count35kj5 — CountBSkAFjs) X PCSpggy + CountBSkAFjs x IPCpggi] [W/kmz],

where the IPCggy is the instantaneous power consumption of the k-th BS type (Table 4)
and the Countgga Fe is the number of k-th type BSs allocated in the j-th UD density class
per square kilometer for transfer of RSADVj;. Accordingly, in Equation (13) the IPCps;
represents the instantaneous power consumption of BS1 (Table 4) and Counth;ljS is the
number of installed BS1 BSs per square kilometer of the j-th UD density area in the s-th
simulation scenario.

Simulation Scenario 2 involves preinstalling all variable BSs to ensure the projected
maximum DV for the observed year. These variable BSs operate initially in a low-power
sleep mode when they are not needed to meet current DV demands and are activated
according to an increase in DV of the j-th UD density area. This simulation scenario
anticipates a maximal number of variable BSs installed in advance, which remain inactive
until DV increases. On the other hand, in Scenario 2, a fixed number of macro BS1 BSs
continue to operate without utilizing any energy-saving technique. Therefore, the BSS
instantaneous power consumption per square kilometer of the j-th UD density area in
Scenario 2 (IPCjp) can be formulated as follows:

(14)
Vi=1,..., MAs=2

where the IPCpgy is the instantaneous power consumption of the k-th BS type (Table 4), the
IPCpg1 represents the instantaneous power consumption of BS1 (Table 4), Count BS1j, is the
number of preinstalled BS1 BSs per square kilometer that is equal for each j-th UD density
class of every s-th simulation scenario (Table 3), the C ountBSk].S is the number of the allocated
BSs of k-th type in the j-th UD density class per square kilometer for transfer of RADVj,, the
Countgsa Fy is the number of k-th type BSs allocated in the j-th UD density class per square

kilometer for transfer of RSADVjs, the expression (CountBSkjS — Countpggia Fjs) represents

the number of BSs of type k that are operating in sleep mode, and PCSggy, is the power
consumption of k-th BS type operating in sleep mode (according to Table 4 assumed to be
10% of IPCpgy maximal power consumption).

Scenario 3 involves the preinstallation of variable BSs that need to satisfy predicted
maximum DV capacity demands for the observed year. This scenario does not include any
techniques for improving network EE; therefore, all BSs operate in the active state at peak
power consumption. The BSS instantaneous power consumption per square kilometer of
the j-th UD device density class in Scenario 3 (IPC;3) can be formulated as follows:

IPCj, = IPCps; x Countpsy,, + Y, [PCpsi x Countpg, [W/kmﬂ, Vi=1..,MAs=3 (15)
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Scenario 4 includes an increase in the number of variable BSs in accordance with the
growth of the DV during the 2020s. In this scenario, the number of installed variable BSs in
time is dynamically increased based on the actual DV increase observed during the 2020s.
A key feature of Scenario 4 is the introduction of the Tx power scaling technique, where
both macro (BS1) and variable BSs (BS2 and BS3) utilize this energy-saving technique. The
technique is based on scaling the BS Tx power according to DV fluctuations. The BSS
instantaneous power consumption per square kilometer of j-th UD density class in Scenario
4(I PCj4) can be formulated as follows:

IPCj; = PCTxpsy x Countpsi, + Yy, PCTxps; x Countpsear, [W/ka], Vi=1 .., MAs=4 (16)

where PCTxggy is the power consumption of the k-th BS type in the Tx power scaling mode
of operation (Table 4) and Countpgia Fs is the number of k-th type BSs in the j-th UD density
class per square kilometer allocated for the transfer of RSAD V.

5.1.4. Estimation of Energy Efficiency Metric of UD Density Area

To formulate the data and coverage EE metrics of the j-th UD density classes for
each of the 5G network simulation scenarios, the parameters and equations defined in the
previously presented analytic framework are utilized. According to Equation (1), the data
EE is defined as the amount of data transferred per unit of consumed energy. In terms of
this analysis, the data EE metric for the j-th UD density class of the s-th simulation scenario
(EE MN,DV],S) can be expressed as the ratio of the transferred SADVj; per square kilometer
in the j-th UD density class and the energy consumed per square kilometer by the BSS
infrastructure allocated in the j-th UD density class. The data EE metric is formulated
as follows:

SADVjs . .
EEMN,DV/-S = IPC. [blt/]], V] = 1, ey M A Vs = 1, 2, ey S (17)
js

where the IPC;; represents the instantaneous power consumption of BSSs infrastructure
per square kilometer allocated in the j-th UD density class of the s-th simulation scenario.
Equation (17) for the s-th simulation scenario presents the data EE metric expressed per
square kilometer of the j-th UD density area. Also, according to Equation (2), the coverage
area EE is defined as the area covered by the 5G signal per unit of energy consumed.
In terms of this analysis, the area EE metric is expressed as the ratio of the total size of
the j-th UD density area of the s-th simulation scenario (COA_desMNj;) and the energy
consumed by the BSS infrastructure allocated in the j-th UD density area. The area EE
metric (EEpN co A]'s) is formulated as follows:

COAdesMst 1

EE s = -
MN,CoAj; IPst % COAdesMNjS x T IPC]' xT

[m2/]], Vi=1.., MAVYs=12 ...,5 (18)

where the COA_desMNjs expresses the size of the j-th UD density area in the s-th simulation
scenario and T refers to the period assumed in the analyses (equals to 1 year).

5.2. Calculation of the Allocated Number of Variable BSs Based on Algorithm 1

The calculation of the number of allocated variable BSs (BS2 and BS3) in every of the
j-th UD density areas for each analyzed country in the s-th simulation scenario is performed
according to Algorithm 1. Based on input parameters (line 1), Algorithm 1 calculates the
number of variable BSs (BS2 and BS3) as output parameters for each of the s-th scenarios
(line 2). As specified in lines 34, Algorithm 1 iterates for each of the j-th UD density
areas (classes) of the s-th simulation scenario. This ensures that calculations are performed
for all defined UD density areas (classes), including rural, suburban, urban, and dense
urban areas.
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Algorithm 1. Calculation of the number of allocated variable BSs

1 Input: S, M, L]'s, K,ll[js, D[js, AF]'S, ADRZ], CountBSljs, DVmuxBSk, rBSk

2 Out’put: ADV]'S, st, TDVJ‘S, RAD‘/IS, COAd(:‘SMN/'SI SADV]S, RSADqu, COMVltBSkjS, CountBSkAFjs
3 for each simulation scenario s from 1 to S do

4. for each UD density class j from 1 to M do

5. forlfrom1to L; do

6 COAdesMNjS += ajjs

7

8

end for

. forlfrom1toL; do
9. I\]]'s += Dljs
10. end fori
11. forifrom1to Njs do
12. TDVjs += ADR;;
13. end for
14. ADVjs = TDVjs/ COA_desMNjs
15. SADVjs = ADVjs x AF;
16. RADVjS = ADV]'S— (COWltBsys X DVmaxBSl)
17. RSADVjs = SADVjs— (Count351js X DViyaxBsi)
18. CountBszjs = ceiling (RADVjs X rpsz)/ DVmaxps))
19. CountBSZAF}-S = Ceiling ((RSADV]S X rgsz)/DVmﬂXBsz))
20. Count353/.5 = ceiling ((RADVJS X 1’353)/DV711QX353))
21. Count353AF,.5 = ceiling ((RSADV]‘S X 7’353)/DV771L1X353))
22. end for
23.  end for

Based on information related to the specific users” density allocation of a country
obtained for the GeoTiff file, Algorithm 1 in lines 5-7 calculates the total area of each j-th
UD density class and in lines 8-10, calculates the total number of UDs in each j-th UD
density class. Considering the calculated total number of UDs in the j-th UD density area
(class), in lines 11-13, Algorithm 1 calculates the total DV of the j-th UD density class and
calculates the average DV per square kilometer of the j-th UD density area (class). Based on
the calculated average DV per square kilometer of the j-th UD density area (class), in lines
14-17, the algorithm estimates the average, the scaled average, the remaining average, and
the remaining scaled average DV per square kilometer of the j-th UD density area (class),
respectively. Based on the previously calculated parameters, in the last execution phase of
Algorithm 1 (lines 18-22), the calculation of the number of installed variables BS2 and BS3
for transferring RADV; and RSADV/, respectively, is performed. Algorithm 1 ends after
calculating the installed variable BSs in all UD density areas for all scenarios (line 23).

5.3. Calculation of the UD Density Area Energy Efficiency Metrics Based on Algorithm 2
Calculating the data and coverage area EE metrics of every j-th UD density class of the
s-th simulation scenario is performed according to Algorithm 2. Based on input parameters,
some of which have been calculated as an output of Algorithm 1 (SADVj;, COA s MN;
CountBskjs,CountBSk AF],S), Algorithm 2 calculates data and coverage area EE metrics for
every of the s-th simulation scenarios (line 3). As specified in line 4, Algorithm 2 starts
iterating for each of the j-th UD density areas (classes) of the s-th simulation scenario.
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Algorithm 2. Calculation of the instantaneous power consumption for different scenarios

1 Input: S, M, K, T, SADV]S, COAdL’SMN]‘S/ COLH/ltBSk].S, COul’ZtBSkAF].S, IPCBSk,PCTxBSk/ PCSBSk
2 Output: IPC]'S, EEMN,DVjS/ EEMN,CDA]'S

3 for each simulation scenario s from 1 to S do
4. for each UD density class j from 1 to M do
5. IPCjs =0

6 if s ==1 then

7 IPCJ‘S +=IPCpg1 X COMHtBSljS

8. for each of the BS types k from 2 to K do
9. IPC]'S += IPCpggj X CountBSkAp].s

10. end for

11. end if

12. if s ==2 then

13. IPC]'S +=IPCpgg1 X Count;_r;s]js

14. for each of the BS types k from 2 to K do
15. SleepBSCount = CountBSkjS —CountBSkApl.s
16. IPCjs += SleepBSCount x PCSpsy

17. IPCJS += CountBSkAFjs X IPCBSk

18. end for

19. end if

20. if s == 3 then

21. IPC]:, += IPCBSl X COLlYli‘BSljS

22. for each of the BS types k from 2 to K do
23. IPCJ‘S += IPCBSkX COIHltBSk],5

24. end for

25. end if

26. if s == 4 then

27. IPC]'S += PCTXBSk X CountB51]5

28. for each of the BS types k from 2 to K do
29. IPCJS += PCTXBSk X CountBSkAFis

30. end for

31 end if

32. EEMN,DVI.S = SADV;s/1PCjs

33. EEMN,COA]-5= 1/(IPC]'5 X T)

34. end for

35. end for

After setting the initial instantaneous power consumption of every j-the UD density
area to 0 W (line 5), Algorithm 2 iteratively calculates the instantaneous power consump-
tion of every j-th UD density area (class) for Scenario 1 in lines 6-11, for Scenario 2 in
lines 12-19, for Scenario 3 in lines 20-25, and for Scenario 4 in lines 26-31. Based on the
calculated instantaneous power consumptions of every j-th UD density area and according
to calculated (by Algorithm 1) the total area size and DVs of each j-th UD density class,
Algorithm 2 in line 32 calculate the data EE metric. Also, in line 33, for a predefined time
period of one year, the Algorithm 2 calculates the coverage EE metrics of each j-th UD
density class. Algorithm 2 ends after calculating the EE metrics in all UD density areas for
all scenarios (line 34).

5.4. Comparison of the Analytical Framework Characteristics

The analytical framework for the evaluation of network EE includes several important
elements that add significant differences and enhancements to the analytical framework
introduced in [5,18]. This framework distinguishes from the one introduced in [5,18] by
employing UD density allocation that is country specific for Croatia and The Netherlands,
enabling more accurate and realistic estimation of EE metrics in diverse, real-world 5G
network environments. In contrast to the analytical framework presented in previous
studies [5,18] that relied on generalized trends in DV variations, the analytical frame-
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work proposed in this work adapts the EE analysis to the specific UD density areas and
geographic characteristics of the analyzed countries.

A notable advancement of the analytical framework proposed in this work is in the
use of UD density area-specific activity factors, which enable the simulation of UDs and
corresponding DV changes more realistically across different UD density areas (rural,
suburban, urban, and dense urban). This refinement allows capturing the expected UD
increase during the 2020s in specific UD areas and DV variations as they occur within
different regions of the country, making the analytical framework better suited to reflecting
real-world traffic conditions.

Another aspect that contributes to the accuracy improvement of the analytical frame-
work is the introduction of the SADV parameter. This parameter defines the country-
specific ADV parameter by incorporating the UD density area-specific activity factor,
allowing it to more accurately represent real-world variations in a number of active UDs
across different UD density areas. The analytical framework in [5,18] employed simpli-
fied static estimates of DV variations, failing to account for country-specific temporal and
spatial changes in the number of UDs and corresponding DVs. By utilizing the SADV
parameter, the analytical framework proposed in this work enables a more detailed and
dynamic analysis of network EE metrics, thus addressing one of the key limitations of
earlier approaches presented in [5,18].

Additionally, the presented analytical framework employs advanced modeling of BSs
capacity estimation. This provides a broader and more granular selection of operational
parameters of analyzed BS types compared to previous models that relied on uniform and
more general BS capacity estimation. By taking into account additional radio resources in
BS capacity estimation such as bandwidth, modulation order, resource blocks, subcarrier
spacing, and transmission overheads, this enables the proposed analytical framework to
offer a more precise perspective on how different BS types perform under varying network
capacity demands. Thus, the presented analytical framework differentiates from analytical
frameworks in [5,18], by offering country-specific insights about UD density variations in
different UD density areas during the 2020s, which makes the simulation of 5G HetNet
behavior closer to real practical applications.

6. Results

In this section, the different installation and operation scenarios of 5G BSs in the 5G
RAN have been analyzed in terms of data and coverage area EE metrics on the example of
the two specific countries, which are Croatia and The Netherlands. Due to diversities in
geographical reliefs and an overall number of estimated 5G UDs in 2030, the 5G HetNets of
those countries have been selected for analysis as prominent examples of 5G networks.

However, it is worth emphasizing that the developed simulation model based on
Algorithm 1 and Algorithm 2 enables analyses of EE metrics for any of the world countries
in the future period at the countries’ national level.

The analysis performed on the example case of The Netherlands and Croatia was
conducted for four distinct 5G BSs installation and operation scenarios presented in Table 4,
at the countries’ national level. In terms of the versatile 5G BSs installation approaches, the
concept based on the continuous installation of the 5G BSs according to the increase in 5G
UDs through the 2020s (Scenario 1 and 4 in Table 5) and the concept of preinstallation of
all 5G BSs according to estimated needs for capacity in the observed year (Scenario 2 and
3 in Table 5) were explored. In addition, the analyses were performed in terms of different
operation modes of the 5G BSs that include on and off switching of variable BSs (in Scenario
2) and Tx power scaling (in Scenario 4) according to estimated DV variations (Table 5).

Each of these 5G BS operating modes is characterized by different power consumption
parameters, as detailed in Table 4. The aim of this analysis is to evaluate the changes in
data and area EE metrics of 5G HetNet of each country for two observed years (2020 and
2030). The analysis is based on projected DV growth within the 5G HetNet of the selected
countries for two observed years according to the simulated BS installation and operational
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scenarios (Table 5). The analysis provides insights into the effectiveness of different EE
strategies in managing the evolving demands for serving an increased number of 5G UDs
in the 5G networks of Croatia and The Netherlands. Also, the analysis sheds light on the
future trends in changes in the EE metrics of the 5G RAN on the level of the whole country.

6.1. Data Energy Efficiency Analyses of UD Density Areas

A comparative analysis of the obtained simulation results for the data EE metric of
the Croatian and Dutch 5G mobile network in the years 2020 and 2030 is presented in this
subsection. In Figures 4 and 5, the results of analyses related to the trends in changes in data
EE metrics are presented for each simulation scenario. The data EE metrics are presented
in Figures 4 and 5 for the years 2020 and 2030 of every simulation scenario on a scale of
six different levels of data EE metrics, ranging from the lowest (equal to 0.00-0.06 Mbit/])
to the highest (>1.8 Mbit/]).

In the case of results for all simulation scenarios presented in Figure 4a,c,e,g and
Figure 5a,c,e,g for the year 2020, the low data EE metrics (>0.06 Mbit/]) dominate on the
national level. This suggests that the mobile network, in its initial phase of implementation,
is characterized by high EC in relation to the amount of data it transfers. Thus, for every
simulation scenario in 2020, the largest part of the Croatian and Dutch 5G network operates
at the lowest data EE, suggesting that while the 5G network infrastructure is operational, it
has notbeen fully utilized. Still, Figure 4a,c,e,g and Figure 5a,c,e,g show differences between
data EE of Scenarios 1-4, even at this early stage of the 5G network implementations. In
Figure 4a,c,e,g and Figure 5a,c,e,g, it can be seen that certain regions, primarily concentrated
around urban centers with denser populations and higher data usage, achieve higher
(1.0-1.8 Mbit/J) or the highest (>1.8 Mbit/]) data EE metrics. This can be particularly seen
for Scenarios 1 and 4 which have, even in 2020, more regions with higher data EE metrics
than those of Scenarios 2 and 3. Compared with Scenarios 2 and 3, somewhat larger areas
of more data EE regions in the 5G networks are seen for Scenarios 1 and 4, which points to
more effective approaches to initial 5G BSs installation and operation in terms of data EE.

For data EE metrics of simulation Scenarios 14, Figure 4b,d,f,h and Figure 5b,d,f,h
present simulation results for Croatia and The Netherlands in the year 2030, respectively.
According to Figure 4b,d,f,h and Figure 5b,d,fh, in 5G networks of each country, an
improvement in the country’s data EE can be observed for every analyzed simulation
Scenario 1-4, respectively. This general improvement of data EE metric by 2030 is reflected
in the implementation maturity of the 5G network infrastructure over the decade, which
benefits from optimized network deployment and operation management, resulting in
more efficient 5G networks in terms of data EE metric. More specifically, this improvement
in the number and size of regions having higher data EE metrics (>0.2 Mbit/]) is more
evident for Scenario 1 (Figures 4b and 5b) and Scenario 4 (Figures 4h and 5h) and somewhat
less evident for Scenario 2 (Figures 4d and 5d), while Scenario 3 has the lowest improvement
of data EE metric by 2030 (Figures 4f and 5f). For both countries, the results of simulation
Scenarios 1 and 4 show that this transition from predominant regions having lower data
EE efficiency in 2020 (Figure 4a,c,e,g and Figure 5a,c,e,g) to more in the number and
size regions having higher data EE metrics in 2030 (Figure 4b,d,f,h and Figure 5b,d,f,h)
confirms the need for practical implementation of BS installation approaches and operation
strategies that contribute to the improvement of 5G network EE. According to results
presented in Figure 4b,d,f,h and Figure 5b,d fh, the higher data EE metrics in 2030 are
achieved around urban centers having a higher population density and greater use of the
5G network capacity, which consequently results with more energy-efficient use of the
network infrastructure.
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Figure 4. Data EE metrics (Mbit/]/ km?) for Croatia in the case of: (a) Scenario 1 for the year 2020,
(b) Scenario 1 for the year 2030, (c) Scenario 2 for the year 2020, (d) Scenario 2 for the year 2030,
(e) Scenario 3 for the year 2020, (f) Scenario 3 for the year 2030, (g) Scenario 4 for the year 2020, and
(h) Scenario 4 for the year 2030.
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Figure 5. Data EE metrics (Mbit/]/ km?) for The Netherlands in the case of: (a) Scenario 1 for the year
2020, (b) Scenario 1 for the year 2030, (c) Scenario 2 for the year 2020, (d) Scenario 2 for the year 2030,
(e) Scenario 3 for the year 2020, (f) Scenario 3 for the year 2030, (g) Scenario 4 for the year 2020, and
(h) Scenario 4 for the year 2030.
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Figures 4h and 5h further highlight that Scenario 4 based on BS scaling of the Tx power
and adapting the installation of new BS according to DV growth has the best long-term
improvement of the data EE metric on the national level of the 5G network. Nevertheless,
Scenario 1 (Figures 4b and 5b), based on the adaptive installation of the BSs according to DV
growth and lack of any EE management techniques in the operation of 5G BSs, achieved
similar long-term improvements of data EE metrics as Scenario 2 (Figures 4d and 5d),
lacking any adaptive installation of variable BSs while implementing scheduling of sleep
and active operation mode of variable BSs. This points to the necessity of implementing
simultaneously both BS installation and resource management strategies (as in Scenario
4) to achieve the highest improvement in data EE metrics. Further proof of this point
can be found in the worse results of the data EE metric for the case of Scenario 3 in
2030 (Figures 4f and 5f), which are consequence of the lack of any 5G BSs installation and
resource management strategies dedicated to improving 5G HetNet EE.

6.2. Coverage Area Energy Efficiency Analyses of UD Density Areas

A comparative analysis of the obtained simulation results of the coverage area EE
metric for the Croatian and Dutch 5G mobile network in the years 2020 and 2030 are
presented in Figures 6 and 7, respectively. Figures 6 and 7 present the regions of different
UD density classes, which for each country and for the years 2020 and 2030 are assumed to
have the same ranges of UD densities in each UD density area (class) according to defined
in Table 3. This means that dense urban, urban, suburban, and rural UD density areas
presented in Figures 6 and 7 have been defined according to the same range of UD densities
of every UD density class. For such UD density areas, the values of coverage area EE
metrics have been presented in Figures 6 and 7 in the years 2020 and 2030, for Croatian and
Dutch 5G networks, respectively. According to Figures 6a and 7a, in 2020, the rural UD
density class dominated in both countries, covering 99.96% of the land area encompassing
97.27% of devices in Croatia and 98.33% of the total land area encompassing 81.36% of the
total devices in Dutch. The remaining areas of both countries in 2020 (Figures 6a and 7a)
belong to suburban areas with a small share of the total area of each country. The absence of
the dense urban and urban UD density classes in Figures 6a and 7a means that no region in
both countries has reached the device density levels specified for these UD density classes.
This is a consequence of the inception of the implementation of 5G networks having in this
period a lower number of 5G devices in the network.

By 2030, the distribution of UD density classes in both countries undergo a significant
transformation (Figures 6b and 7b). More specifically, such transformation results in the
estimated rural UD density class for the Croatian network equal to 90.27%, while for the
Dutch network, the estimated rural UD density class falls to 44.2% of the total area of the
country. However, the estimated areas of suburban UD density classes in 2030 for Croatia
(equal to 7.78%) and The Netherlands (equal to 36.84%) increased, and even urban (equal
for Croatia to 1.95% and for Netherland 18.55%), and in the case of The Netherlands the
dense urban UD density class (equal to 0.41%) emerged by 2030 (Figures 6b and 7b). In
Figures 6b and 7b, it can be seen that the largest transformation in the classification of UD
density areas is for suburban and urban UD density regions, which become broader on
account of the reduced size of rural UD density regions. This expansion of the suburban
and urban UD density areas points to a significant increase in the density of 5G devices
across both countries by 2030. Additionally, dense urban UD density areas have emerged
in certain metropolitan areas of The Netherlands, characterized by high UD densities that
are typical for the most densely populated urban environments. This change in UD density
areas is the result of the wider adoption of 5G technology in 2030, driven by an increase in
the number of UDs per square kilometer. Thus, such a shift in the distribution of UD density
classes from 2020 to 2030 in both countries is a reflection of the evolving landscape of UD
distribution caused by the expected increase in the number of 5G UD devices (Figure 2),
urbanization, and technological advancements imposing utilization of new use cases in the
5G network.
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Changes in the Croatian and Dutch coverage area EE metrics for specific simulation
scenarios are presented in Figures 6 and 7, respectively. According to Figures 6 and 7,
significant changes in coverage area EE metrics can only be noted for the rural UD density
class in the case of simulated Scenarios 1, 2, and 4 of the Croatian network. This substantial
decrease in coverage area EE metrics can be attributed to the increase in the dispersion
of 5G devices and DVs over the decade in rural UD density areas of Croatia, lacking the
existence of urban and suburban UD density areas by 2030.

This increase in the density of 5G devices imposes a shift in coverage area EE metrics
for rural UD density class to significantly lower values due to the necessity of ensuring
the transfer of DV for a growing number of UDs through adding additional 5G RAN
infrastructure. One exception includes the results obtained for the coverage area EE met-
rics of Scenario 3 (Figures 6 and 7), which remain low and consistent (at 2.95 m?/MJ)
for both countries in 2020 and 2030. Thus, Scenario 3 characterized by all 5G BSs prein-
stalled according to DV needs in 2030 and 5G BSs actively operating without utilizing any
energy-saving techniques, results in 2020 and 2030 with low coverage area EE metrics, on
which UDs increase and UDs geographic distribution in both countries do not have any
particular impact.
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Figure 6. Distribution of device density classes and coverage area EE metrics in Croatia: (a) for the
year 2020 and (b) for the year 2030.

Contrary to rural UD density areas in Croatia, suburban UD density areas for Sce-
narios 1, 2, and 4 do not exhibit significant changes in coverage area EE metrics in the
period from 2020 to 2030 (Figures 6 and 7). This uniform pattern of the coverage area
EE metrics for suburban UD density areas having similar values across Scenarios 1, 2,
and 4 of both countries in 2020 and 2030, highlights that increases in UD densities and
DVs in suburban UD density areas did not have a significant impact on coverage area
EE metrics. This indicates that an increase in the size of the suburban UD density areas
and corresponding DVs in both countries has been followed by 5G BSs installation and
operation approaches that generate a stable increase in EC of 5G BSSs through a decade,
maintaining consistent coverage area EE metric across suburban UD density areas. Overall,
the results for the coverage area EE metrics confirm that the coverage area EE metrics are
highly country dependent, which means that different geographies of the country with
different concentrations of UDs and 5G use cases have a significant impact on coverage
area EE metrics.
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Figure 7. Distribution of device density classes and coverage area EE metrics in The Netherlands:
(a) for the year 2020 and (b) for the year 2030.

7. Discussion

This section provides a detailed discussion of the obtained results for data EE metric,
coverage area EE metrics, and yearly EC as the three key metrics crucial for evaluating
the deployment progress and sustainability of 5G networks. These metrics represent the
network’s ability to manage growing demands for 5G HetNets data transfer and signal
coverage from the perspective of different network EE metrics. Concerning these three
metrics, this discussion will provide a detailed insight into the development of the 5G
HetNets of Croatia and The Netherlands, from the initial network implementation stages
in 2020 to more advanced stages in 2030. The effectiveness of different BS installation and
operation scenarios dedicated to optimizing 5G network EC will be discussed, thereby
providing directions for strategic progress in future planning of 5G BS installation and
operation from the perspective of 5G network EE improvements.

7.1. Discussion on Data Energy Efficiency Metrics of 5G Networks

According to Equation (1), the data EE metric addresses 5G network operational
efficiency by measuring how the 5G RAN infrastructure maintains a balance between EC
and transferred data volume. The average data EE metrics per UD density area of analyzed
simulation scenarios have been presented in Figures 8a and 9a for the Croatian and the
Dutch 5G networks, respectively. According to results presented in Figures 8a and 9a, the
data EE metric for both countries increases in the period of 2020-2030 for all UD density
areas in all simulation scenarios. This increase is a consequence of the increase in UDs in
the 5G network by 2030 (Figure 2), which imposes that 5G RAN BSs become more utilized,
leading to higher data EE per square kilometer (Figures 10a and 11a). Thus, the main reason
for these results is the better utilization of the 5G RAN infrastructure, which becomes better
utilized due to the increased number of served UDs and corresponding DVs which, for
the same consumed energy, transfer a larger amount of data. For that reason, even those
UD density areas presented in Figures 8a and 9a that did not exist in 2020 and emerged in
2030 due to an increase in the number of UDs (Figure 2) and corresponding DVs, achieve
higher values of data EE metrics than data EE metrics of UD density areas that exist in
2020. This also explains why in Figures 8a and 9a for both countries in all simulation
scenarios, the highest increase in data EE metric in the period of 2020-2030 achieves dense
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urban UD density area, while the lowest data EE metrics have been achieved for rural UD
density area.

The average data EE metrics per analyzed simulation scenarios for the complete coun-
try have been presented in Figures 10a and 11a for the Croatian and the Dutch 5G networks,
respectively. The average country data EE metrics presented in Figures 10a and 11a are
obtained by averaging data EE metrics of each UD density square kilometer area of the
complete country for every analyzed simulation scenario. Generally, results presented in
Figures 10a and 11a for Croatian and Dutch 5G networks are summarized representations
of the results for data EE metric presented per each UD density area in Figures 8a and 9a,
respectively. According to results presented in Figures 10a and 11a, the average data EE
metric for both countries increases in the period of 2020-2030 for all simulation scenarios.
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Figure 8. Estimated Croatian 5G HetNet (a) average data EE metric per UD density area and (b)
average coverage area EE metric per UD density area.
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Figure 9. Estimated Dutch 5G HetNet (a) average data EE metric per UD density area and (b) average
coverage area EE metric per UD density area.

The main reason for such an increase is related to the already explained necessity for 5G
BSs to operate by exploiting larger BS capacities due to the necessity for transferring larger
DVs caused by the increased number of UDs by 2030. This consequently leads to higher
data EE metrics characterized by the transfer of more data per unit of energy consumed by
the 5G BSs. Thus, the increase in UD densities and corresponding DVs through the 2020s
have a positive impact on the average country data EE metrics, which during the 2020s, will
increase. However, according to Figures 8a and 9a and Figures 10a and 11a, absolute values
of data EE metrics per UD density class and average data EE metrics for each simulation
scenario of both countries are country dependent. Those absolute values of EE metrics
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differ among countries based on country geographic structure and trends in increasing
the number of UDs and corresponding DVs in a specific country. Figures 10a and 11a
also indicate that the highest increase in country average data EE metrics in the period of
2020-2030 for 5G networks of both analyzed countries is achieved for simulation Scenario
4, while the lowest increase in country average data EE metrics is obtained for simulation
Scenario 3. Simulation Scenario 1 and Scenario 2 also achieve better average country
data EE metrics than simulation Scenario 3, which emphasizes that implementation of
any energy-aware installation or 5G RAN management techniques can contribute to the

improvement of data EE metrics.

Average coverage energy efficiency (mleJ)

Scenario 2 Scenario 3 Scenario 4

I 2020 M 2030
(a)

Scenario 2 Scenario 3 Scenario 4

I 2020 I 2030
(b)

Scenario 1

Figure 10. Estimated Croatian 5G HetNet (a) average data EE metric per simulated scenario and

(b) average coverage area EE metric per simulated scenario.
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Figure 11. Estimated Dutch 5G HetNet (a) average data EE metric per simulated scenario and
(b) average coverage area EE metric per simulated scenario.
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The fact that even simulation Scenario 3 lacking any BS installation and RAN man-
agement techniques for improving 5G network EE still in 2030 achieves improvement in
average country data EE (Figures 10a and 11a) compared to those in 2020 is a consequence
of the previously explained increased UDs number and UDs densities that enhances 5G
BSs data transmission efficiency, resulting in an increase in average country data EE metric
(Figures 10a and 11a). Nevertheless, Figures 10a and 11a indicate that in 2030, simulation
Scenario 4 achieves significantly better average country data EE metrics than simulation
Scenario 3. This underscores the need for the implementation of advanced installation
and BS resource management approaches (such as those utilized in Scenario 4) that can
contribute to the improvement of 5G network data EE.

7.2. Discussion on Coverage Area Energy Efficiency Metrics of 5G Networks

According to Equation (2), the coverage area EE considers the 5G network coverage
EE, by examining the energy that 5G RAN resources utilize to maintain coverage of 5G UDs
across specific UD density areas. The average coverage area EE metrics per UD density area
of analyzed simulation scenarios have been presented in Figures 8b and 9b for the Croatian
and Dutch 5G networks, respectively. According to results presented in Figures 8b and 9b,
the coverage area EE metric for both countries decreases in the period of 2020-2030 for all
UD density areas in all simulation scenarios. The main reason for these results can be found
in the fact that maintaining 5G network coverage in areas characterized by the increase
in the number of UDs (Figure 2), demands larger 5G network resources, which results
in more energy consumed by 5G RAN elements and consequently decreased coverage
EE per square kilometer of covered area. For that reason, even those UD density areas
presented in Figures 8b and 9b that did not exist in 2020 and emerged in 2030 due to the
increase in the number of UDs and corresponding DVs, achieve lower values of coverage
area EE metrics than those of UD density areas that exist in 2020. This also explains why
in Figures 8b and 9b, for both countries in all simulation scenarios, the highest decrease
in coverage EE metric in the period of 2020-2030 achieves dense urban UD density area,
while the lowest decrease in coverage area EE metrics has been achieved for rural UD
density area.

The average coverage area EE metrics per analyzed simulation scenarios for the
complete country have been presented in Figures 10b and 11b for the Croatian and Dutch
5G networks, respectively. The average country coverage area EE metrics presented in
Figures 10b and 11b are obtained by averaging coverage area EE metrics of each UD density
square kilometer area of the complete country, for every analyzed simulation scenario.
Generally, results presented in Figures 10b and 11b for Croatian and Dutch 5G networks
are summarized representations of the results for coverage area EE metric presented per
each UD density area in Figures 8b and 9b, respectively. According to results presented
in Figures 10b and 11b, the average coverage area EE metric for both countries and for
all simulation scenarios decreases in the period of 2020-2030. The main reason for such
a decrease is related to the already explained necessity of installing additional 5G BSs for
ensuring signal coverage and capacity for the transfer of larger DVs caused by the increase
in the number of UDs by 2030 (Figure 2). This consequently leads to lower coverage area
EE metrics, characterized as lower service areas that can be covered with 5G BSs signal
for a unit of consumed energy. Thus, the increase in UD densities and corresponding
DVs through the 2020s have a negative impact on the average country coverage area EE
metrics, which during the 2020s will decrease in both countries for any installation and
RAN operation scenario. However, according to Figures 8b and 9b and Figures 10b and 11b,
absolute values of the coverage area EE metrics per UD density class and average coverage
area EE metrics for each simulation scenario of both countries are country dependent. Those
absolute values of EE metrics differ among countries based on country geographic structure
and trends in increasing the number of UDs and corresponding DVs in a specific country.

Figures 10b and 11b also indicate that in 2030 the lowest value of country average
data EE metrics in the 5G networks of both analyzed countries is achieved for simulation
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Scenario 3, while the highest value of the country average data EE metrics is obtained for
simulation Scenario 4. This further emphasizes the importance of combining adaptive
energy-aware installation and operation strategies (such as those utilized in Scenario 4) for
efficient energy use of 5G networks. Furthermore, simulation Scenario 1 and Scenario 2 also
achieve higher average country coverage area EE metrics than simulation Scenario 3. These
results emphasize that the implementation of any energy-aware installation and/or 5G
RAN management techniques can contribute to achieving better coverage area EE metrics.

7.3. Discussion on Annual Energy Consumption of 5G Networks

The effectiveness of different operational scenarios in optimizing overall 5G network
EC is discussed in this subsection. The estimations of annual EC per UD density area
have been presented for each simulation scenario of Croatian and Dutch 5G HetNets in
Figures 12a and 13a, respectively. Based on the results presented in Figures 12a and 13a,
different UD density areas for different countries and scenarios have different annual ECs.
In the case of Croatian HetNet in 2030, the highest annual ECs were estimated for all
scenarios in rural UD density areas (Figure 12a), while for the Dutch HetNet in 2030, the
highest yearly overall ECs for all scenarios were estimated in suburban UD density areas
(Figure 12b). This result is a consequence of the need to ensure 5G BSs signal coverage
and capacity over larger rural and suburban UD density areas and to accomplish this, a
significant amount of BSs need to be installed. This consequently gives a larger contribution
to the overall 5G HetNet EC in comparison with the contribution to the overall network
EC of BSs allocated primarily to ensure appropriate DV capacities in urban and especially
dense urban UD density areas (Figure 12a,b). Also, results presented in Figure 12a,b
confirm that the emergence of new UD density areas in 2030 further contributes to the
overall annual EC. However, this contribution depends on the amount of 5G BSs allocated
in specific UD density areas, which is further directly related to the size and number of
UDs of specific UD density areas.
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Figure 12. Estimated Croatian 5G HetNet (a) annual EC per UD density area and (b) total annual EC
per simulated scenario.
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Figure 13. Estimated Dutch 5G HetNet (a) annual EC per UD density area and (b) total annual EC
per simulated scenario.

The estimations of annual EC per each simulation scenario have been presented for the
Croatian and Dutch 5G HetNets in Figures 12b and 13b, respectively. According to results
presented in Figures 12b and 13b, the estimated yearly 5G network EC of all simulation
scenarios increases in the period of 2020-2030 for both countries. This increase is a conse-
quence of the UD increase by 2030 in the 5G networks of both countries (Figure 2), imposing
that more 5G BSs in RAN needs to be installed, which also become more utilized, leading to
higher annual 5G HetNets EC of both countries (Figures 12b and 13b). Thus, the presented
results in Figures 12b and 13b confirm that annual 5G HetNet EC will continue to increase
by 2030 for both countries. This increase will persist irrespective of the implementation of
different 5G BSs energy-saving installation and operation management techniques, that
have been simulated in specific scenarios and which are or will be implemented in practice.
This also set the grounds for the reasonable assumption that an increase in 5G HetNets
yearly EC in the future will also be a characteristic of the EC of upcoming sixth-generation
(6G) mobile networks.

Still, the implementation of different energy-saving 5G BS installation and operation
management techniques in simulation Scenarios 1, 2, and 4 can not be neglected in the
context of reducing the overall annual HetNets EC. This is confirmed in Figures 12b and 13b,
showing that simulation Scenarios 1, 2, and 4 have lower annual EC in comparison with the
highest annual EC obtained for simulation Scenario 3 of both countries in 2030. Simulation
Scenario 4, by incorporating strategies such as dynamic BS installation and Tx power
scaling according to an increase in the number of UDs, achieves the highest average data
(Figures 8 and 9) and coverage EE (Figures 10 and 11), which consequently results in lowest
annual 5G HetNets EC of both countries (Figures 12 and 13). In contrast, Scenario 3 in terms
of 5G HetNet EE exhibits the worst performance, with the lowest data (Figures 8 and 9)
and coverage EE (Figures 11 and 12), which consequently results in the highest annual EC
(Figures 12 and 13). This is a consequence of the absence in utilizing the energy-efficient
5G BSs installation and operation management techniques in simulation Scenario 3. This
difference in results obtained for data and coverage EE and overall 5G HetNets EC between
Scenario 3 and Scenarios 1, 2, and 4, particularly demonstrates the significant impact
of dynamic 5G BS installation and operation management techniques on the long-term
improvement of 5G HetNets EE. They also highlight the critical need for the implementation
of adaptive BS installation and operation management strategies, exploiting innovative
energy-saving techniques to achieve sustainable 5G network operations in the long-term
period which will be characterized by a significant increase in the number of 5G UDs.
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7.4. Discussion on Mobile Networks” Annual Energy Consumption per Unit of Transferred Data

Besides the presented analysis of 5G networks EE based on two standardized metrics,
in this final section, the results of the comparative analysis among countries are additionally
presented for one highly relevant EE metric known as energy consumption per unit of
transferred data (measured in kWh/GB). This analysis is performed based on results
obtained from presented simulation scenarios of Croatian and Dutch 5G networks that
are compared with the Global System for Mobile Communications Association (GSMA)
Intelligence measurements published for the years 20202022 in reports [47-49], respectively.
These reports contain results of annual estimations of average energy consumption per
unit of transferred data, representing average values of this EE metric for different telecom
operator mobile networks in a selective group of countries located on different continents
around the world. The EE metrics presented in reports [47-49] offer a global benchmark
of energy consumption per unit of transferred data, which represents an important EE
metric that allows the results of this study to be contextualized within the broader global
framework of deployed mobile networks.

7.4.1. Comparative Analyses of GSMA Intelligence Global EE Benchmark Data

In Figure 14, a comparison of average annual energy consumption per unit of trans-
ferred data (kWh/GB) in 5G networks for Croatia, The Netherlands, and GSMA Intelligence
global benchmark data has been presented. The average energy consumption per unit of
transferred data presented in Figure 14 obtained by GSMA Intelligence indicates bench-
mark EE metrics of mobile networks located worldwide [47-49], taking into account the
measurements data for multiple mobile network generations that include 2G, 3G, 4G, and
5G networks [50]. This inclusion of mobile network multi-generation data captures the
varying EE metric levels across generations, as older mobile network generation typically
consumes more energy per unit of transferred data compared to newer 5G networks that
are more optimized in terms of energy consumption. To date, for monitoring metrics related
to the trends of average energy consumption per unit of transferred data, three annual
measurements (for years 2020-2022) have been carried out and presented in reports [47-49].
These reports include data from mobile network operators of numerous countries located
on all continents (besides Antarctica), reflecting the diversity of mobile network deploy-
ments and operating conditions. As an example, for the year 2020, the data were provided
by seven mobile operator groups covering 31 mobile networks across 28 different countries
which include The Netherlands [47]. For the year 2021, the report [48] included 10 mobile
operator groups, with data from 58 mobile networks in 56 countries that also include
Croatia, representing nearly 1.3 billion connections or 16% of global cellular connections.
For 2022, obtained data further increased to 17 operator groups, encompassing 65 different
mobile networks in 59 countries including The Netherlands and Croatia, which cover
approximately 1.6 billion connections or 19% of the global connections [49]. This steady
increase in the number of countries and operators with corresponding mobile networks
participating in analyses during three analyzed years enables benchmarking of energy
consumption per unit of transferred data EE metric in terms of worldwide trends.

According to Figure 14, in 2020, the GSMA estimated global average energy consump-
tion per unit of transferred data to 0.24 kWh/GB, which dropped to 0.13 kWh/GB in 2021,
while estimations of this EE metric for 2022 slightly increased to 0.15 kWh/GB. The reason
for the drop of EE metric in 2021 can be in the start of the widespread adoption of 5G
networks that are more energy efficient than mobile networks of previous generations.
Additionally, the reason for the trend of a slight increase in EE metric in 2022 can be in
the inclusion in the analyses of more countries, operators and corresponding mobile net-
works, especially from developing countries that have slower deployment of 5G network
infrastructure, which consequently negatively affects this annual average EE metric.
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Figure 14. Comparison of average annual energy consumption per unit of data transferred in mobile
networks for Croatia, The Netherlands, and GSMA global benchmark data.

7.4.2. Comparative Analyses of Obtained Results for Croatia, the Netherlands and
GSMA Intelligence

Figure 14 also presents simulation results obtained for Croatian and Dutch 5G mobile
networks in terms of average annual energy consumption per unit of transferred data.
According to the obtained results for almost all analyzed installation and operation simula-
tion Scenarios 1-4 of the 5G networks (Figure 14), the average annual energy consumption
per unit of transferred data in 2020 and 2030 is lower than those estimated by the GSMA
Intelligence global EE benchmark data for 2020 (and also 2021 and 2022).

The reasons why these countries have better EE metrics (i.e., have lower kWh/GB
values) than those estimated by the GSMA Intelligence in [47-49] may be attributed to
several factors. The first factor is related to the fact that both Croatia and The Netherlands
have relatively modern mobile networks with notable penetration of 5G technology in
comparison to many other countries included in the GSMA Intelligence analysis, espe-
cially those categorized as developing countries. Additionally, the societal and geographic
characteristics of each country located in different continents can influence the EE metric,
contributing to a more energy-efficient transfer of GB of data traffic in mobile networks.
GSMA Intelligence analyses include a wide range of countries located on different con-
tinents with varying levels of mobile network infrastructure maturity and technology
adoption. Thus, in the analyses of GSMA Intelligence, the significant presence of develop-
ing countries and corresponding networks having less EE RAN infrastructure due to the
deployment of older mobile network technologies likely has contributed to obtaining the
higher overall GSMA Intelligence annual average EE benchmark metrics in the period of
2020-2022. Also, according to the results presented in previous sections, higher deployment
density of advanced 5G RAN infrastructure, especially in urban areas, tends to contribute
to the improvement of network energy efficiency. Countries with less deployment density
of 5G RAN infrastructure and fewer resources for advanced energy management may
achieve worse EE metrics compared to those having networks modernized deploying 5G
technology. Furthermore, the high value of the EE metric obtained in simulation Scenario 3
for Croatia in 2020 is the result of a lack in utilization of any deployment and operation
approach dedicated to improving 5G network energy efficiency. In simulation Scenario
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3, a small amount of data is transmitted in relation to the energy consumed by the fully
implemented 5G network, which means that the 5G RAN operates with minimal traffic
load. This low utilization rate leads to inefficient energy usage per unit of transferred data,
resulting in a much higher kWh/GB value compared to other simulation scenarios where
different 5G network deployment and operation approaches dedicated to improving the
network EE have been simulated.

Figure 14 also shows projections of average annual energy consumption per unit of
transferred data for 5G networks of Croatia and The Netherlands for each of simulation
Scenarios 14 in 2030. According to Figure 14, the projections of this EE metric in 2030
show a decrease in average energy consumption needed for the transfer of unit of data
in comparison with 2020 for all analyzed simulation scenarios of both countries. More
specifically, the lowest projected average annual energy consumption per unit of transferred
data for 5G networks of Croatia and The Netherlands in 2030 is obtained for Scenario
4, while the highest has been obtained for Scenario 3. This trend is in line with the
improvements in EE metrics presented in the previous sections of this work and it is
a consequence of the adoption of more energy-efficient mobile network technologies
(such as 5G) and the implementation of operation and deployment strategies dedicated to
optimizing the 5G RAN energy consumption.

In conclusion, although the GSMA Intelligence average annual energy consumption
per unit of transferred data offers a valuable benchmark for this global mobile network EE
metric, deviations from this value for a specific country can often be attributed to differences
in the level of implementation of 5G technology, social and geographic characteristics of the
country, and the implementation of energy management practices of the mobile network
operator(s) offering mobile network service in a specific country. Thus, the implementation
of 5G technology and some or a combination of analyzed 5G network operation and
deployment strategies can in the future contribute to the reduction in the mobile network
energy consumption needed for transferring the unit of data, thereby enhancing overall
network EE. The obtained results for the year 2030 predict an improvement in the average
annual energy consumption per unit of transferred data (kWh/GB) for both countries,
demonstrating that the implementation of some or a combination of analyzed EE techniques
contributes to the mobile networks in becoming more sustainable. Therefore, these findings
further highlight that adapting EE strategies in the deployment and operation of 5G mobile
networks will contribute to the improvement of worldwide annual energy consumption
per unit of transferred data metric, and consequently will direct mobile networks towards
being more sustainable on a global level.

8. Conclusions

In this research, a comprehensive analytical framework for assessing the impact of
an increase in the number of UDs during the 2020s on the EE of the 5G network has been
developed. Based on the developed analytical framework, simulation analyses of future
trends in changes of 5G HetNet EC and EE metrics for four different 5G BSs deployment
and operation management scenarios have been performed. A simulation analysis is
demonstrated using the example of the Croatian and Dutch 5G networks, which differ in
the number of UDs and distribution of UD density areas. The obtained results reveal the
trends in changes of the 5G HetNet EC and data and coverage area EE metrics for rural,
urban, suburban, and urban dense 5G network UD density areas (classes).

The presented simulation results reveal that an increase in the number of UDs through
the 2020s will have a positive impact related to the improvement of the data EE metrics
of 5G networks in both countries. However, this positive EE gain is countered by the
negative impact reflected in the decreased coverage area EE metric when the number of
UDs increases in 5G networks. Although data and coverage EE of rural, suburban, urban,
and urban dense UD density areas of analyzed countries might differ due to differences in
UD densities and geographic sizes of specific UD density areas of each country, the obtained
results show that the total yearly 5G network energy consumption of both countries will
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increase in the future. This increase will be present independently of implemented energy-
saving concepts in the 5G network. However, implementing techniques for improving
network EE in the form of the 5G BSs deployment and operation management according
to an increase in the number of UDs can contribute to the significant reduction in yearly
country network energy consumption and the improvement in data and coverage area
EE metrics.

Also, the obtained results provide MNOs with crucial insights into the trade-offs
between the necessity of serving a constantly increasing number of 5G UDs and 5G network
EC under various 5G BSs deployment and operation management scenarios. The results of
the analyses show that scenarios based on implementing the gradual deployment of the 5G
BSs, the 5G BSs sleep modes, and Tx power scaling techniques according to UD growth
demonstrate significant potential for improving data and coverage area EE metrics and
reducing total network energy consumption. Thus, the insights obtained in this work are
crucial for MNOs in strategizing the future deployment and operation management of 5G
BSs, as they need to balance the necessity for expanding network coverage and capacity
and ensuring network sustainability and EE.

Future work will be dedicated to analyses of the impact of the increase in the number
of 5G UDs on EE of 5G networks of a large number of different countries differing in their
geographic morphology and overall number of UDs.
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